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AN EFFICIENT CODE FOR THE SIMULATION OF 

NONHYDROSTATIC STRATIFIED FLOW OVER OBSTACLES 

Gregory G. Pihos and Morton G. Wurtele 

Department of Atmospheric Sciences 

University of California, Los Angeles 

INTRODUCTION 

Background 

The gravity wave is the subject of a voluminous literature containing 

theoretical and/or observational studies. However, the numerical simula- 

tion of this phenomenon has received much less attention than has climate 

modeling or numerical weather prediction. A two-dimensional, nonlinear, 

nonhydrostatic model (Foldvik and Wurtele, 1967) produced realistic 

results, but was too expensive for operational use. Various linear models 

(Danielsen and Bleck, 1970; Vergeiner, 1971) avoided this difficulty, but 

could be considered reliable only when reproducing wave-like features and 

not when simulating turbulence-generating, wave-breaking patterns. Some 

highly successful computations are those of Klemp and Lilly (1978), which 

are applicable when the disturbance generated satisfies the quasi-hydro- 

static approximation. 

When the prediction of areas of clear-air turbulence (CAT) is the 

chief emphasis of a study, it is essential to retain both nonlinear and 

nonhydrostatic effects in any numerical model. Since 1966, computers and 



computational techniques have been developed to an extent permitting the 

formulation of a model like that of Foldvik and Wurtele, but efficient 

enough to run at low cost, As a consequence, such a model can be used 

(1) to study sensitivity of results to input data; (2) to test the im- 

plications of a great variety of idealized initial and boundary conditions; 

and (3) to simulate easily and cheaply in real time the gravity-wave and 

CAT patterns associated with any operationally analyzed or predicted syn- 

optic situation. The model and the code of the present study have been 

developed with all three of these purposes in mind, 

Gravity Waves and CAT 

Before describing the model in detail, it may be advisable to clarify 

some ideas and concepts involved in the relation between gravity waves and 

clear air turbulence. Although a number of subtle dynamic considerations 

are involved in the stability of stratified shear flow, for the purposes 

of this study we shall proceed from the assumption that a Richardson number 

of 0.25 is the marginally critical value for the stability of an incom- 

pressible Boussinesq flow to small perturbations. Normally the initial 

conditions assumed for the model will be characterized by Richardson num- 

bers many times larger than the critical. By one means or another-- 

represented in the model by flow over an obstacle--this flow is disturbed, 

and disturbed flow will contain areas in which the Richardson number is 

reduced from its initial value and areas in which it is increased. The 

dynamic/kinematic mechanism of this Richardson number modification-by- 

deformation is subject to various semi-quantitative explanations. Some 
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interpretations are reviewed by Pao and Goldburg (1969). The most widely 

accepted explanation of CAT generation is that large amplitude gravity 

waves resulting from flow over mountain ranges can and do generate local 

regions in which the Richardson number falls below the critical value, and 

moderate to severe CAT results. 

Steady state linear or nonlinear solutions have been constructed for 

a number of highly idealized conditions. However, mathematical analysis 

cannot predict with any precision whether and where areas of subcritical 

Richardson number will occur from an arbitrary disturbance in an arbitrary 

flow field. Thus, for the purposes of the present work, we rely upon the 

numerical model exclusively to make these predictions. No attempt is made 

here to verify any particular theoretical interpretations of CAT formation; 

this must be the goal of further study, It should also be emphasized that 

qualitative features, such as wavelength, rotor formation, trapping, and 

upward propagation, are well simulated by various gravity wave models in 

the literature, but that there exist few quantitative comparisons with 

observational data. Further comparison to actual measurements will be 

required to measure the reliability of this model, or any other, to 

simulate nature. To this end, use of this model is welcome, and we have 

endeavored to make the code as understandable and as versatile as possible. 

In addition to the description of the model in the following section, a 

documentation of the code is given in the appendix, 

3 



___ ., “.‘< 
__-.. -L... - ---. .-- - 

THE TWO-DIMENSIONAL, BOUSSINESQ MODEL 

The model must include buoyancy as the primary restoring force for 

any disturbance of the free stream, However, dynamic compressibility-- 

the effect resulting in acoustic waves-- is not significant in the study 

of CAT. Thus, incompressibility is assumed, but in a manner that retains 

the static effect of compressibility, Thus temperature, potential 

temperature, density, and pressure in the undisturbed atmosphere may be 

realistically represented in the initial conditions of the model. Further, 

the Boussinesq assumption is made, neglecting the kinematic effect of den- 

sity variation (that is, where density multiplies velocity) while retaining 

the full dynamic effect of buoyancy (where density multiplies gravity). 

The two-dimensional, Boussinesq model greatly facilitates computational 

ease and speed. Only two variables, vorticity and density, are directly 

advanced in time. The third variable, the streamfunction, is obtained 

at each time step by solving a Poisson equation (eq. (7~) below). The 

method of solution consists of applying a fast Fourier transform in the 

horizontal, then utilizing a one-dimensional marching solution in the 

vertical. This noniterative procedure is at least an order of magnitude 

faster than iterative relaxation techniques. Another advantage of this 

model is the existence of an energy integral for arbitrary mean density 

profiles, such as upstream inversions. (In contrast, non-Boussinesq models 

present computational difficulties when the stability profile is varying 

rapidly.) These factors will permit the program to be used frequently with 

sounding data, or in theoretical profiles. A description of the input/output 



options is given in the appendix. 

Equations Solved by the Model 

We begin with the following set of equations: 

The equation of motion: 
+- 

g+f;x;= -1 
;vp+;j 

The equation of state: 

p=pRT 

The equation of continuity: 

s!fL dt + pv=-;=o 

and the thermodynamic equation: 

(la) 

(lb) 

UC) 

g=C p $Jn T) - R $#n p) (14 

Molecular viscosity and thermal conductivity will be considered to be 

unimportant. 

This set of four equations in four unknowns may be simplified by 

making several assumptions. First, we will concentrate on mountain- 

induced gravity waves, and will limit our consideration to length scales 

of motion which are small compared to cyclone scale motions, so the 

effect of rotation will be ignored, Second, the time scale of the motion 

is small compared to the time scale of radiative heating, so the adiabatic 

dQ assumption, dt = 0, may be made. The system of equations then becomes: 

dG= -1 
dt ,v,+; (24 

5 / 

- --____- 
,.,. c;, _ :-. 
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p=pRT (2b) 

dp -&f + pv*;=o 

cp & (ln T) - R k (ln P)=O 

ec 1 

(2d) 

A further simplification results from assuming the fluid density to be 

incompressible but not homogeneous. This permits us to allow density grad- 

ients in the vertical and buoyant restoring force without the unnecessary 

computation of acoustic motions, Both terms in equation (2~) then become 

equal to zero. This permits us to express the system of equations (2) as a 

system of three equations in three unknowns: 

d;; -1 -= 
dt ,VPG 

dp=o 
dt 

(W 

(3b) 

v l G=o 

The Boussinesq approximation states that the kinematic effects of density 

gradients are negligible compared to the buoyancy effects of density 

gradients in the equation of motion. The nonlinear equation (3a) then 

becomes: 

d; 
PO dt = -VP + 0; (4) 
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where p, is an undisturbed reference density. 

Although significant airflow is deflected around long mountain ranges 

such as the Sierra Nevada, even when the wind is normal to the ridgeline 

(Holmboe and Klieforth, 1957), we will concentrate on the flow passing 

directly over the mountain. For this purpose, the cross section of the 

range is sufficiently uniform such that the flow may be assumed to be 

two dimensional. Taking the curl of equation (4) with the operator (~*VX) 

in a left-handed x-z coordinate system yields the vorti'city equation: 

as;= 
-v= (3.a 

9 ap 
at - p. ax 

Similarly, g = -V*($) 

W 

(5b) 

aw where 3 f $*Vx$ = z - $-, and u and w are the horizontal and vertical 

components of $. 

The streamfunction 3, for two-dimensional incompressible flow may be 

defined by 2 f w and -g E u. Then, 5 E V2$, where V2 E 5 + L, 
ax2 az2 

I and the system of equations (5) becomes: 

I%= a3 x a3 2 9 aP 

at ET az -TEax’<Z 

ap= W!L!?fOl! 
at 5T az az ax 

V2$ = 3 

(6b) 

(64 
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aa ab aa ab 
or introducing the Jacobian operator, J(a,b) E z~ - z~ , 

a3 - = J(3&) - Fg at 0 

ap at = J(P,@) 

v2+=3 

(74 

(7b) 

(74 

The lower boundary condition is that the surface is a streamline: 

$(x,h(x)) = constant (7d 

where h(x) is the height of the barrier, The upper boundary condition is 

that the kinetic energy becomes vanishingly small with elevation: 

1 
2 p(u2 + w2) =; p(v3,)2 +-Oasz+a . (74 

The system of equations (7) constitutes the model on which the program 

is based. The scheme for their numerical solution and the associated code 

are fully described in the appendix. The assumptions made are justified 

and discussed below. In subsequent sections, numerical simulations with 

the model are compared with selected special cases for which analytical 

solutions can be obtained. 

A Justification of the Incompressible and BOUSSineSQ Approximations 

The effect of these two assumptions may be seen by examining the ver- 

tical velocity, profile of the steady state, linearized perturbation equa- 

tions. Defining 8 s T($)K and II z cp(f )K, where K E R/c the compres- 
0 P' 

sible system of equations (2) may be reexpressed as: 

8 
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d-f 
d.t;= 

-evfl + ;; 

de 
x=0 

@a) 

(8b) 

(84 

where cs2 - cpw3~/cv = cpRT/cv. In a two-dimensional steady-state system 

(where $- = 0), these become: 

e(u g + w 8) = q(g + ZK) 
I 

ae a0 UTgWaz =o 

(gc) 

(gd) 

Now, assume that each variable q(x,z) in the system may be expressed as 

the sum of a perturbed part q'(x,z), and an unperturbed part s(z); that 

is, qbLz> = q'(x,z) + ?j(x,z). Further assume that w(z) = 0, and that 
- 

the unperturbed state is in hydrostatic balance, that is, g = -%$$ . 

The linearized perturbation equations for the compressible system are then: 

u ~1, w, aii - -e arr’ 
ax az ax (lOa> 



,. -.‘-: 

li 2x3’ + w, ae’ - o 
ax az 

igii g+ w’ g, = -g( g’+ ?g’) 

(10”) 

(1 Od) 

This system is then solved for w': 

a2d + a2d 
ax2 a2 

& ln(!!) ?!!'+ [4 .L ln r&j + 2-L ln(!l.) g - - - 
i az ;2 az u' az 

p' az 

1 a2ilw, = o 
ii az2 

-2 (11) 
where m E 1 - u-, 

CS2 
Usually, ii CC cs, which means mzl, so the equation 

for w' in the compressible system becomes: 

a2w' + a2k +a~f+ (gS + s ai 1 a2ii --- 
ax2 a,* az i2 u az 

--WI = 0 
U az 2) 

1 a; 
where s : - Yaz, SE136 9 

and s = S + - 
P 

p' c2' S 

02) 

To analyze the effect of the incompressible assumption, we will derive 

a similar equation for w' from the incompressible system of equations (3). 

In a two-dimensional steady-state system, these equations have the form: 

. 

au+,-= 
' ax 

au -I ?P 
az P ax 

aw + ,#J - = aw 
' ax az 

-HF!- g 
P az 

(13a) 

(13b) 

10 
- . _ --- --. .-____-- .- 

1 
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(13c) 

As before, assume that each variable q(x,z) may be expressed as 

q(x,z) = q!( x,z) + q(x,z), and assume that gi = -g , Then the linearized 

perturbation equations for the incompressible system are: 

- ad , aii -1 apI 
UFK+W E’ ;ax 

- ad -1 b', p'g 

u == iaz P 

u ap’, w& = 0 
ax az 

ad ai8 --. 
ax+ET” 

(14d 

(lab) 

(14c) 

('4d) 

The equation for w' in the incompressible system is then: 

3Zwl 2 I 

Z+Z- az 
&‘+ (4s+GL-~ 

ii2 u az 
1 a2ijw, = 

ii az2 

The only difference between the steady-state 
gSw' 

pressible equations appears in the terms - and 
ii2 

motions may still be modeled by the heterogeneous 

0 (15) 

compressible and incom- 

gsw' , 
ii2 

So atmospheric 

incompressible model 

by replacing the frequency of oscillation of the incompressible fluid 

(gs)"2 by the Brunt-Vaisala frequency N = (gS)"' of atmospheric 

11 



buoyancy oscillations. 

Now, to discuss the effect of the Boussinesq approximation, we will 

derive an equation for w' from the system of equations (4), (3b), and (3~). 

The two-dimensional steady-state equations are: 

au au -5 * 
%T+waz= poax 

aw aw -1 aJ_pJ 
Uax+WTE= p. az po 

The complete set includes equations (13~) and (13d). 

turbation equations are: 

- ad ai -1 F&’ 
U a~ + w’ az = po ax 

- awl -1 w- p’s 
Uax = p,ax p. 

(164 

(‘6b) 

The linearized per- 

The complete set of linearized equations includes (14~) and (14d). These 

result in the following equation for w' in the Boussinesq system: 

a2d 2 
-+?l!‘w’,(---~ w. 

ax2 az2 ii2 

1 a2i w, 
ii az 

2) =0 (18) 

where s z -1 a; 
0 p, az - 

The incompressible Boussinesq and non-Boussinesq w' equations may be 

made simi 

the form 

12 

lar to each other by transforming the non-Boussinesq equation into 



a262 2 
+a+ ( 

ax2 az2 
E+s au 
ii2 ii az 

- 13.5 - 1 s* + 1 as),, = o 
U az2 4 2 az ('9) 

where w' G (- ) i l/2 wI In most atmospheric profiles, the !?- and -- 
1 a2ii . 

PO 1 as 
terms dominate over the 2 s l- s2, and 2 az terms, 

ii2 ii az2 

u az' 4 so the dynamics of w' 

in the Boussinesq system are similar to the dynamics of o' in the non- 

po l/2 Boussinesq system. Since w' = (=--) WI, the dynamics of the two systems 
P 

are similar to the degree that p(z) remains constant. This is true essen- 

tially for shallow atmospheric systems (Ogura and Phillips, 1962). 

To sum up, the reason for using the incompressible assumption and 

Boussinesq approximation is to simplify the system of equations to be 

solved. In order to retain the dynamics of the compressible atmosphere, 

the stability S will be used, and vertical density gradients will be re- 

tained everywhere. The total percentage variation of density in the fluid 

will be kept small, since p will then have the same scale height as the 

potential temperature. Then the compressible system w' equation (12) 

applies, 
PO l/2 

and may be similarly transformed using w' = (-) w' to yield: 
D 

a2w’+ a2d+ F(z)wl -- 
ax2 az2 

=0 

gs - 
where F(z) E - + s c 

1 a2i 
ii2 u az 

1 2 + 1 as 
----FS ii az2 2 az l 

Techniques for Analytical Solution of the Linear Problem 

(20) 

The mountain wave problem consists of solving equation (20) with the 

appropriate boundary conditions in the upper half plane z > 0. The lower - 

13 



boundary condition consists of tangential flow to the barrier, 

w’(x,z) = $p [U(z) + u!(x,z)l at z = h(x) (21) 

where h(x) is the height of the barrier. Assuming that h is small, the 

linearized version of equation (21) is written as: 

w’(x,O) = U(0) p (22) 

The upper boundary condition is that the kinetic energy, pw'/2, vanish at 

r = m where r = (x2 + z2p2 . In terms of w'(x,z), these conditions be- 

come: 

o’(x,O) = U(0) p , and lim U' = 0 . (23) 
w 

Now, assume that u'(x,z) may be expressed as a sum of individual wave 

components, w '(x,z) = $ z(k,z)eikx dk, and express the ground terrain as a 

sum of Fourier components, h(x) = JoJh(k)e ikxdk. Since the system is 

linear, the behavior of a single waye component may now be examined, The 

L system becomes: 

2^ 
d w(k'z) + [F(z) - k*l1;(k,z) = 0 
dz2 

with boundary conditions: 

i(k,O) = iku(O)G(k), and lim L(k,z) = 0. 
z- 

(244 

(24b) 

14 



The general solution is L(k,z) = c,(k)&(k,z) + c2(k)G2(k,z); where cl(k) 

and c2(k) are arbitrary constants to be determined by lim [w(k,z)l = 0. 

Then G(k,z) = c3(k)G3(k,z), where i3(k,z) is a linear gzbination of G,(k.z) 

and G2(k,z), and c3(k) is determined by another boundary condition,c3(k) = 

k(k,0)/i3(k,0). Then 

i(k,z) = iku(O)^h(k) 
i3(k,z) 
~3(k,0) 

(25) 

h 

w'(x,z) = i"ikti(O)K(k) 
i3(k,z) 

eikx dk 
-03 G3(k,0) 

(26) 

This integral is improperly defined for any value of k where h3(k,0) = 0. 

If the integral is evaluated at these singularities by taking Cauchy's 

principal value, the primary contribution to the integral comes from the 

neighborhood of the singularities. These discrete values of k, if any 

exist, correspond to free waves or resonance waves of the system, and 

represent eigensolutions of equation (24) which dominate other waves in 

the system. 

For a given velocity and stability profile, the boundary conditions 

either do not uniquely determine the steady-state solution, or do not 

uniquely determine the amplitudes of the free waves, Mathematical 

uniqueness may be established, however, by some physical argument, such 

as requiring that all waves vanish far upstream of the barrier, or by 

considering a time-dependent system which asymptotically approaches the 

steady-state solution, 

15 



COMPARISON OF MODEL WITH ANALYTICAL SOLUTIONS 

To establish confidence in the consistency of the numerical model, 

the computations will be compared to known analytical solutions. In 

general, these analytical solutions exist only for the linearized steady- 

state equations with simple idealized meteorological profiles. Although 

the model also incorporates nonlinear and transient motions, it should 

qualitatively and quantitatively resemble the linear, steady-state solutions 

after a period of model time, assuming that the barrier height and the 

density and velocity profil 

linear effects. 

es have been selected to preclude highly non- 

Constant Vel ocity, Constant Stability Case 

This is basically the 

g s 
the constant value F =y 

simplest case, since F(z) in equation (20) has 

1 2 -- 
4s’ where U = u 0' Usually, cl s ; s2<< - 

II 2 , so 'JO' 
that the w' equation becomes: uO 

a2d + &’ + k 2631 = o 

ax2 az2 S (27) 

where kS 
gs 

5 (--,) is the stationary wavenumber. This wave equation specifies 
L’O 2mo 

a disturbance with wavelength Xs ! p = N = 
l/2 

(where T 
S 

0 

is the reference temperature, y is the lapse rate, and yd is the dry adi- 

abatic lapse rate), which is independent of the barrier and is approached 

asymptotically at large distances by the actual solution since the boundary 

conditions have not yet been taken into account. Using the previously 
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stated boundary conditions, Lyra (1943) expressed the vertical velocity 

field for an arbitrary obstacle z = h(x) as an infinite series of Bessel 

functions of the first and second kind (Jv and Yo): 

w’(x,z) = 2uo I "w$ [f Yo(ksr) ' m + ; vfo J2V+l s 
(k r) cosi:$f')o jdx 

-m 

(28) 

where cx = tan -'($). S ince the Bessel functions Jv are eigensolutions of 

the system, an infinite number of free waves exist, due to the zeros in the 

J 
V)’ 

For many barrier shapes, including the rectangular shape in the 

numerical model, the free waves add up to form an infinite series of back- 

ward tilting lee waves with X -f X, as r + 00, 

Figures 1 through 3 show the transient development of the streamlines 

for the Lyra problem when u. = 25 m/set, To = 273K, y = 0, Ax = AZ = 1000 m, 

and At = 20 set (referred to as case 1) at times 50 At, 75 At, and 100 At. 

The qualitative appearance of the waves agrees with the results of Lyra, 

except for the influence of the top boundary in the model. This boundary 

will not be as important in most other velocity profiles, since more 

energy will be trapped at lower levels, The theory predicts that X, = 8.4 km. 

The most reliable wavelength measurements for comparison to the analytical 

solutions are taken in the area of a well-developed wave pattern and as far 

downstream as is feasible to avoid distortions caused by the assumption of 

no upstream perturbations, At 7 km elevation, figure 3 exhibits 8.5 km 

separation between the second and third crests, and 8 km separation between 

the third and fourth crests, 
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As the model approaches a steady state, $g - g $$ = ?$+ 0 or 

g / 3 = $!$ / 2; that is, the slopes of the isolines of streamfunction 

and density are everywhere equal, so that the isolines of these variables 

should coincide. Figures 4 and 5 show the general resemblance of the density 

field to the streamline field at time 50 At and 100 At, except in the vicinity 

of the barrier, where most transient development is still taking place, 

Assuming that p(z) 2 p, in the model, then W' z (_) po v2w’ = _ w' z $, 
P 

and equation (20) becomes: 

2, 2, 
% + q + F(z)+' = 0 (29) 

ax az 
In the Lyra case, F(z) = ks2, and r = 0, so then 5' = O'Q', which implies 

that 5' = -ks21/1'; that is, the isolines of vorticity should coincide with 

the isolines of streamfunction displacement, Figures 6 and 7 show the 

resemblance of the vorticity field to the troughs and crests of the 

streamline field, except in the vicinity of the barrier, where the 

assumption of linearity is not valid. It should also be noted that the 

vorticity field shows small scale perturbations which are computational 

in nature. These short wavelength perturbations occur mainly as a result 

of aliasing, that is, the inabi'lity of any numerical mode7 to resolve 

disturbances with wavelengths less than two grid intervals. As is 

discussed in the appendix, the finite differencing scheme used retards the 

unstable growth of these perturbations, and we have not found it necessary 

to use filtering, smoothing, or damping operators in order to run physically 

meaningful computations for a sufficiently long period of time, Since the 

vorticity is the second derivative of the streamfunction, the streamfunction 

field should remain smoother than the vorticity field. 
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2 
The local Richardson number, defined as Ri E - :g/ (q)2 in the 

az 
model corresponding to figures 3, 5, and 7 at time 100 At, is shown in 

figure 8. It should be noted that Richardson number tends to vary 

rapidly over several orders of magnitude in disturbed sections of the flow. 

Thus, loglo is actually plotted, and values of Ri <, .16 or Ri > 10 are 

set to 0.16 or 10 respectively, in order to highlight areas where Ri < 0.25. 

Also, since the Richardson number is the quotient of first and second 

derivatives, the finite-difference analog for Ri is not dependable within 

one grid interval of the ground terrain, 

Linear Shear, Constant Stability Case 

For this case, F(z) = g+di 12 

c2 u az -4s' where u = uo(l + cz). Assuming 

that s _ f s2 >> 2 %, 
ii2 u az equation (29) becomes: 

a2v + ti + (9s _ zLjQ~ = 0 
ax2 az2 ii2 

(30) 

Assume that $'(x,z) = jco eikx$(k,z)dk, and let z1 = 1 + cz. Then, for a 
-co 

single wave component: 

2 + (-k,2 + 
d2$ Ri A 

dzl 

-+ = 0 (31) 

z1 

2 
k2d2 

where k 1 =+ o=g$-. and Ri The solution to this equation 

9 
satisfying the upper boundary condition is a modified Bessel function of 

1 l/2 
the third kind of imaginary order KiV (klzl), where 1-1 = (Rio - u) . 
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Using the lower boundary condition, the solution can be expressed as (Wurtele, 

1953): 
ixk, 

dJ'(w) = ( +"',i= e' h(k) 
Kip [kl (J+CZ I] dk 

-co 
K 

iv(kl) 
(32) 

The free waves of the system correspond to discrete values of kn(or (k,)n) 

for which Kil-l[(kl)nl = 0, with wavelength X, : p = 2T[(kl)nc 2 1 2 -l/2 
- z s 1 

n 

and no tilt with height, and exist only for 1-1 > 0 or Rio > $. The number 

of free waves with wavelengths in the mesoscale range increases with 

decreasing shear, approaching an infinite number in the Lyra case, 

When u. = 10 m/set, c = 2.7 x 10w4/m, To = 250K, and y = 6.76K/km 

(referred to as case 2), then Rio = 16.0, 1-1 = 3.97, and the theory predicts 

two free wave modes with wavelengths 13.7 km and 31.0 km. Figure 9 shows 

the streamfunction field at 3750 seconds. Only the first wave has developed, 

with two crests separated by 13 km. At 7500 seconds, figure 10 reveals the 

shorter wave dominating below 5 km, and a longer wave with two crests 

separated by 29 km prevailing at higher elevations, in accordance with the 

theory, 

Exponential Shear, Constant Stability Case 

In this case, ii = uoecz, so F(z) = i!? em2" +sc _ c2 _ i s2 + i $5, 
U2 0 

Assuming that the total percentage variation of p is small compared to the 

2 as 
total percentage variation of ;, then the terms s , z , and SC are all much 

smaller than c2, and equation (29) becomes: 

3fiL + & + (& em2" _ c2)$l = 0 
ax2 az2 U2 

(33) 

0 
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Assume that Q'(x,z) = 1" eikxG(k,z)dk, and let z, = Ri_1'2e?z, where 

Ri r*, Then, 0 u 2c2 0 

+J d2; 
dz22 '2 

The solution to this 

a Bessel function of 

L ” 
foima single wave component: 

k2 
A 7i+ 1 

g+ (1 - CL 2 
NJ = 0 

2 z, 
(34) 

L 

equation satisfying the upper boundary condition is 

k2 the first kind, 3,(z2), where v E (- + l)'j2z 1. 
C2 

Using 

the lower boundary condition, the solution can be expressed as (Palm and 

Foldvik, 1960): 

J (Ri 
+‘(x,z) = i(z)/” eikx^h(k) -’ ’ 

1’2e-cz) 
(.35) 

-03 Jv( Rio1'2) dk 

The free waves, if any, result from discrete values of kn(or vn) for which 

Jv(Rioli2) = 0, 2Tr and have wavelength X, E TT- = 2Tr with maximum 
n 

amplitude development at zn = - f 

c(v;-1)1'2 

ln[(z2)n/Riol, where (z~)~ is the value 

of z2 at which Jv(z2) attains its maximum value between the nth and (n+l)th 

zeros of JV(z2). 

It can be seen graphically (Jahnke and Emde, 1945) that no waves exist 

if Rio1’2 5 3.8, one wave exists if 3.8 s Rio l/2 5 7.0, and two waves exist 

if 7.0 5 Rio l/2 < 10.2. When u. = 20 m/set, c = 1,8x10m4/m, and 

N = l.2x10V2/sec (referred to as case 3),then Rio l/2 = 3.3, and the theory 

predicts no waves, Figure 11 shows no waves after 1200 seconds, When 

U 0 = 10 m/set, c = 2x10m4/m, and N = l.2x10-2/sec (referred to as case 4), 

then Rio l/2 = 6.0, and the theory predicts one wave mode with X = 12.8 km, 

and with maximum amplitude development at z = 2,24 km. At 4500 set, Figure 12 

shows two crests separated by 13 km and maximum amp1 itude occurs at z = 2 km. 
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This case, deve loped by Long (.1955), solves the nonlinear equations with 

a nonlinear barrier in a fluid with a rigid top and bottom, The incompres- 

sible, steady-state equations of motion (13a,b) may be rewritten as follows: 

u 2+w2 
p gy (-+ - SW = - g (36a) 

PkC 
u 2+w2 
--+ + CPU = - g - PS (35b) 

Nonlinear Case with Constant Pu2 

where P = P(Q) and 5 = c(Q). Eliminating p, equation (36) becomes: 

+gz)l ' kc,% d,,, 
2 2 

1 +p+ +gz)] = 0 (37) 

This is then integrated to yield: 

$,/, + 1 dp (vd2 _ c + 1 dqu2 

pd$ 2 
p d,j, 7 + g(zo-z)l (38) 

where u($) and z,(Q) are the horizontal velocity and height associated with 

the streamline for constant Q far upstream of the barrier. Noting that 

d ld -= - -- 
ddJ u dz ' and substituting 6 = z. - z yields an equation in 8: 

0 

$8 + $$ + g] g (In Pu2) = -+$j- B 
0 Pu o 

(39) 

Now, if pu2 is constant, then 1 is constant, and equation (39) 

becomes the linear equation: 

v2 6 + cs26 = 0 (40) 

The constant pu2 criterion is satisfied approximately 

by the model by tetting u constant and keeping density gradients small. 
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Specifying the boundary conditions as 6(,x,0) = $1 -t cos F) for 

-b < x 5 b, with 6(x,0) = 0 elsewhere, and 6(x,H) = 0 at the top boundary 

z = H, Long expressed the solution of (38) as: 

6(x > b, z) = - a? 
n=l 

[Xy,sin(R,b)sin(R,x) sin(n~z)] 

-a y 1% [eRn(x-b)- e-Rn(x+b)]sin(n,z)] (41) 
n=n +l 

1 

where R 2 2 =o - n2.ir2 
n - rnr 

/ 
(1?n2 - f) 

b2 
and n, is the largest integer 

2 
for which R, > 0. 

When u. = 30 m/set, N = 1.2x10-2/set, H = 10 km, a = 0.3H, and b = 0.4H 

(referred to as case 5), the theory predicts a single wave mode with wave- 

2~rH length Al z ,? = znH 
1 / 

(!2ti2 -- 
U2 

n*) = 25.4 km with maximum vertical velocity 

0 

I'max 1 4 2auo y,R,sin Rib = 21.2 m/set. In order to obtain numerical 

computations corresponding to Long's solution, the model simulates the lower 

boundary condition by specifying the nonrigid flow boundary 
uoa7r 

w(x,o) = - 2b sin(?i) for -b < x < b, and w(x,O) = 0 elsewhere. Values - - 

of a and b have been chosen to preclude highly nonlinear disturbances 

downstream. Figures 13 and 14 show the streamline and vertical velocity 

fields at time 3000 sec. The separation between the two crests is approxi- 

mately 25 km, and the maximum vertical velocity is approximately 18 m/set. 

It should be noted that the vertical velocity is defined to have a greater 

value than this at the inflow, and that the measurements must be taken at 

least beyond the first crest. 
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Comparison of Nonlinear Effects 

In the cases above, the height of the barrier has been chosen to be 

sufficiently small so that the model will produce linear effects, However, 

features such as the reversed flow or rotors often observed in association 

with mountain lee waves arise from the nonlinearity of the barrier. This 

concept may be explained as follows, According to equation (22), the 

linearized surface boundary condition for the streamfunction may be written: 

+'(x,O) = uoh(x) - uohd(x) (42) 

where d(x) is a dimensionless profile function of order unity, and h is 

the maximum height of the barrier, In the constant velocity, constant 

stability case, for example, @'(x,z) is a function of ksh, so that $ 

may be expressed in the form: 

- 
+$’ = -uozvG(ksx, kSz) (43) 

where G is 

is then: 

of order unity, and G(ksx, 0) = d(x). The horizontal velocity 

aG(,ksx,ksz) 
*=u uh az 

aG(ksx,ksz) 

az 0-0 = uo[l - ksh a(k z) 1 (44) 
S 

where aG/a 

reversed f 

calculated 

(ksz) is dimensionless and of order unity, The condition for 

low, or u 2 0, is then approximately ksh 2 1. Miles (1969) 

the critical values of ksh for flow over semi--elliptical barriers 

to be between 0.67 and 1.73, depending on the ellipticity of the barrier. 

Figure 15 displays the streamline field at 1500 seconds for the 

Lyra problem when ksh = 1.17 (referred to as case 6), showing that the 
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critical limit has just been exceeded, with reverse flow at some points 

in the field. This case is similar to case 1, except that Ax = AZ = 750 m, 

and At = 15 set, The corresponding density field is displayed in figure 16. 

A more highly nonlinear case with ksh = 1.95, To = 250K,.Ax = AZ = 625 m, 

At = 10 set (referred to as case 7) is portrayed in figures 17 through 19, 

at times 600 seconds, 800 seconds, and 1000 seconds, respectively, This 

sequence reveals the development of highly unstable configurations which 

break down realistically into rotorlike formations. It should be noted 

that the turbulence associated with the instability of the breaking wave 

is not simulated, The density field corresponding to streamline figure 19 

is shown in figure 20. The Richardson number fields corresponding to 

streamline figures 15 and 19 are shown in figures 21, and 22, respectively. 

Some of 

associated w 

of the Rocky 

the most detailed observations of the atmospheric structure 

ith mountain-induced waves have been taken over the eastern slope 

Mountains near Boulder and Denver. Boulder is located at the 

COMPARISON OF MODEL WITH OBSERVATIONS 

immediate base of the north-south range, and is susceptible to occasional 

downslope windstorms, On January 11, 1972, a particularly violent wind- 

storm with peak mean wind velocities of 30 m/set, and gusts to 55 m/set 

swept through the area. Lilly and Zipser (1972) derived cross sections of 

the potential temperature (figure 23) and horizontal wind velocity (figure 24) 

from aircraft observations taken duringthis event. The figures reveal a 

severe downslope windstorm and extensive mid-tropospheric clear air 

turbulence induced by a wave of large amplitude and wavelength, 
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Nonlinear numerical simulations of this case have been performed by Klemp 

and Lilly (1978), and by Peltier and Clark (1979). 

The wind and stability profiles are initialized for our model from the 

Grand Junction, Colorado sounding at OOOZ on 12 January 1972. Grand Junction 

is approximately 300 km upwind and at approximately the same elevation as 

Boulder. The lee slope of the Rocky Mountains in the vicinity of Boulder 

is reproduced as closely as is possible with a resolution of Ax = 2000 m 

and AZ = 500 m. The upwind terrain is quite complex, but its model 

representation was not found to have an appreciable effect in the computation 

owing to partial upstream blocking. Since the potential temperature often 

varies on the surface of a high mountain, the density has been allowed to 

vary on the surface of the barrier for this computation. 

Figures 25 and 26 show the streamline field and the horizontal velocity 

field at 4250 seconds. The model reproduces many of the observed features 

of the mountain wave. The computed trough of the wave is located almost 

directly over Boulder, which is situated within one grid point of the lee 

slope. The computation shows the first crest of the wave to be 38 km 

downstream from the crest of the mountain, compared to an observed distance 

of 37 km. The wave shows no tilt with height up to the tropopause at 

approximately 11 km, then tilts back sharply into the stratosphere. 

In comparing the locations of the maximum and minimum wind velocities, 

it should be noted that figure 23 contains two sets of observations taken 

several hours apart. The winds in figure 24 are derived from the data taken 

during the time when the trough of the wave had moved over the lee slope of 

the mountain, presumably due to variation in the upstream wind or stability 

profiles, A study of numerous windstorms in the Boulder area by Brinkmann 
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(1974) reveals that the surface wind speed maximum is localized beneath the 

trough of the wave, and the output of the model is in agreement,with this 

finding. 

SUMMARY AND CONCLUSIONS 

This report has described the development of a numerical model for the 

simulation of nonlinear, nonhydrostatic stratified flow over obstacles, This 

type of model is appropriate for the investigation of clear air turbulence 

associated with gravity waves resulting from flow over mountain ranges. To 

simplify the equations to be solved, the flow has been assumed to be two 

dimensional and incompressible, and the Boussinesq approximation has been 

made. These features have made possible a code which is sufficiently versa- 

tile and efficient to accommodate case studies using either idealized profiles 

or actual sounding data. 

Simplicity has also been retained in the boundary conditions. Distur- 

bances are generated by a rigid barrier, which is part of the lower boundary, 

The top boundary is also rigid, with periodic boundary conditions at the 

sides. Although these conditions require a sufficiently large computational 

field to produce physically useful results before contamination occurs, the 

computational speed of the program has always made this feasible, 

The consistency of the numerical model has been established by compar- 

ing the computations to known analytic solutions, and by comparison with 

mountain wave observations. The model reproduced qualitative and quant- 

itative features of the steady-state solutions, and also realistically 

simulated breaking wave patterns associated with highly nonlinear obstacles. 
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These tests provide confidence that the model may now be appljed to 

observational data for further comparison, 
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APPENDIX : DESCRIPTION OF THE COMPUTER PROGRAM 

DESCRIPTION OF CALCULATIONS 

The System to be Solved 

The program solves the time-dependent system of equations: 

3 = J(r;,+) - !-a 
P, ax 

if = J(P,$) 

(Ala) 

(A’b) 

v27) = 5 (A’c) 

on a rectangular grid in the x-z plane, with rigid slip boundaries 

(tangential fl ow) at the top and bottom (where $ and p have constant, 

fixed values), and periodic boundary conditions at the sides such that 

the inflow at one side matches the outflow at the other. To facilitate 

the finite difference calculation of horizontal derivatives in the 

program, the second to last column is a duplicate of the first, and the 

last column is a duplicate of the second, Disturbances are generated in 

the flow by a rigid barrier of user-specified shape and size, which becomes 

part of the lower boundary. This system is pictured in the diagram below. 

Grid points in the x-z plane are indexed with the letters (i,j) beginning 

with (i,j) = (1,l). In this system, all variables will be assumed to have 

values only at the same discrete grid points (i,j). All finite difference 
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expressions are valid for all unique '(i,j) in the grid unless otherwise 

stated. 
top rigid boundary 

. . . . * olc; grid point (i,j) l 

Ax x = (i-1)Ax 
. . .M. . . . z = (j-1)A.z . 

* ' ' * poiits dn the barrier l ' 

lower rigid boundary 

Several comments need to be made regarding the boundary conditions. 

First, since the streamfunction is held constant at all times along the 

lower surface and the barrier, the program is applying a nonlinear boundary 

condition in every problem. Thus, the potential exists for nonlinear 

features to form even when simulating a linear analytic solution. The dis- 

tinction between "linear" and "nonlinear" cases is determined by the degree 

of nonlinear behavior in the solution. 

Second, it should be noted that a periodic boundary condition in the 

x-direction allows disturbances which propagate to either lateral boundary 

to reenter through the opposite side, eventually contaminating the solution. 

The computational field must be given sufficient horizontal extent so that 

useful results are obtained before contamination occurs. This disadvantage 

is offset by the absence of reflection at the lateral boundaries, and by the 

flexibility of the model to simulate a wide variety of nonlinear flow prob- 

30 



lems without the necessity of devising a suitable set of open boundary con- 

ditions for each problem. 

Finally, we mention that the top boundary condition constitutes a 

rigid lid. Since this is highly reflective, the computational field must 

be given sufficient vertical extent so that useful results are obtained 

before significant reflection occurs, Due to the computational speed of 

the model, it has always been feasible to utilize a sufficiently large 

array for these purposes. 

Scheme for Solving the Equations 

The program uses an explicit, centered-time (leapfrog), centered-space 

finite differencing scheme with fixed boundary conditions on + and p to 

solve the system of equations (I). Assuming that $, p, and 5 are all known 

at time steps m-l and m, then equations (la) and (lb) may be integrated to 

yield p and r at time step m+l: 

5 
m+l 

= [Jk", Qm) - ; 
0 

@2At + cm-l 

m+l = J(pm, z;“)=2At + p 
m-l 

P 

(A2a) 

(A2b) 

where pm and cm are the values of p and 5 at time step m. Then qrn+' is 

found from r 
m+l 

by relaxing 2 m+l V $ = <m+l 
. 

To begin the procedure, +, p, and 5 are initialized at all points at 

time step 0. Then, in order to start the three level time differencing 

scheme, it is necessary to obtain the values of the variables at time step 
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1 by another method. The model uses a Matsuno-type scheme, 

taking a half time step forward, then using a centered time 

proceed to time step 1, as follows; 

p = [J(z;‘, +‘) - ; 
0 

go] . % + co 

J/2 = J(p”, I$‘)= p + po 

relax 2 V I/J 112 = p for p 

5’ = [J(s;‘/~, $‘12) _ ; 

0 

?$1’2,.At + co 

p’ = J(P”~, $‘2)*At + p” 

relax $+I = <’ for $', 

This scheme results in less computational error, and is less 

than taking a full forward time step. 

which involves 

difference to 

(A3a) 

(A3b) 

(A3c) 

(A4c) 

destabilizing 

After hundreds of time steps, the leapfrog scheme may introduce a 

time-splitting instability into the solution of this nonlinear model. 

This instability may be suppressed by the occasional insertion of a time 

step made by a two level scheme (Mesinger and Arakawa, 1976). Thus, the 

program restarts the procedure every 25 time steps with the scheme de- 

scribed above. This is not the only method which may be used, but it is 

a standard numerical procedure (Arakawa and Lamb, 1977). 
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Initialization of Go, PO, and f" 

The user determines the unperturbed T'(z), T(z), and r"(z) by speci- 

fying the initial horizontal velocity profile, u'(z), and either the initial 

stability profile, So(z), or the initial temperature and pressure profiles, 

To(z) and p'(z). In two dimensions, $?(x,z) E - /[u'(x,z)dz - w'(x,z)dxl. 

When w'(x,z) = 0, and u'(x,z) is a function of z only, this becomes: 

p(z) = -I;u'(z')dz' + $ (A51 

where Qc is an arbitrary constant which has been set to zero by the program. 

Denoting the value of $" at grid point (i,j) as qj, the finite difference 

form of equation (A5), using the trapezoidal rule, is: 

q,, = 0 (AW 

0 0 u.. +u.. 
g,j = Yjvj-, - ( --I2 "? )Az for all j=2,...,NJ (A6b) 

where $?. : p[(j-l)Az]. 
1J 

For the compressible atmosphere, the stability is So(z) = &--- ae"(z). 

e (z) az 
The density profile in this incompressible model is defined to correspond 

to the stability of the compressible atmosphere by setting A- &?(z) 

az, az 

= SO(z). - The expression for p(z) is then: 

a4 = p, expC-l~ S"(z')dz'] (A71 
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where pc is an arbitrary constant which has been set to 1.25 kg/m". Using 

the trapezoidal rule, the finite difference form of equation (A7) is: 

q 1 = PC , (A8a > 

2 i,j ¶- = T j 1 wC- 2 
E(s~,~-, -t s:,~)] for all j=2, .,., NJ (Mb) 

If the user specifies the temperature and pressure profiles 

the stability, then using the definition 0' E T'(s)" , the 

profile is defined by setting -1 a;P - 1 aTo pR ape 

for T(z) becomes: 

pa2 - T0a2 ------* CpP 2 

instead of 

density 

The expression 

(A91 

where pc, Tc, and p, are arbitrary constants which have been set to 1.25 

kg/m3, 273K, and lo5 kg/m-set' respectively, and K = Z/7. The finite 

difference form of equation (A9) is: 

-0 'cTc pg j 217 
pi,j To =-(9 

i J 
C 

The vorticity is calculated initially from the streamfunction by the 

expression 7 = T&Q) Since J) is a function of z only, the expression 

for ? becomes: 
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The finite difference form of equation (All) is: 

G,j 
1 _ (q,j-l + $?j+l - zq,j) for j=2ye-sNJ-1 

(Az12 
(AlZa) 

q, =-q2 , 3 

q NJ = q NJ-1 , , 

(A12b) 

(Al2c) 

Influence of the Barrier 

Since Fourier transform methods are used to relax V2$ = z; for the 

streamfunction at each time step, all interior grid points in the field, 

including those on or inside the barrier, must be considered to be. part of 

the flow. Values of $ at these points are thus subject to change as a re- 

sult of the transformations, To preserve the desired boundary condition on 

the barrier, the effect of the vorticity generated by each separate point 

on the barrier is superposed with the effect of the vorticity generated by 

all the internal points in the grid. Then, the streamfunction at each point 

on the barrier is expressed as a linear combination of the relaxation 

solutions associated with these vorticities (Roache, 1972): 

vf 
NPB 

= qt + c ak+: for all R = 1, NPB 
k=l 

(A131 

where Q, is the solution of V2$o = 5, ek is the solution of v2$k = <k 

due to a unit vorticity ck at barrier point k, the superscript R represents 

the values of $, $o, and I/J~ at barrier point R, and NPB is the number of 
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points on the barrier. The ak's are determined at each time step from the 

linear system (Al3). Then, at each grid point (i,j) in the system, 

NPB 
$ i,j = ($o)i,j + is1 “k($k)i,j (Al41 

Although the superposed solution $ results from additional vorticity on the 

barrier, the solution is a valid one, since it satisfies V2$ = 5 at all 

internal points in the flow, and satisfies all boundary conditions, includ- 

ing the barrier, The additional vorticity on the barrier introduces no 

perturbations in the vorticity of the flow at any time, 

As an example in computing the ok's, consider the case with three points 

on the barrier. The system of equations (A13) then becomes: 

Applying Cramer's rule, 

(A151 

(Al 6) 
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where D is the determinant of the matrix 

and B,, = 

with simil 

points on 

(Al7) 

ar expressions for a2 and a3. For the general case with NPB 

the barrier, 

ak = CR,, ($" - +,")akg , for all k=l, NPB (.Al8) 

where the Bka need to be calculated only once. A Gaussian elimination 

scheme is used to calculate the determinants for the BkR’s. 

Specifying the Initial Conditions 

At time step 0, the barrier is suddenly introduced into the flow by 

defining the bottom topography to be a line of constant $ and p. To reduce 

the physical shock of introducing the barrier, a solution due to the barrier 

may be added to $" without perturbing the vorticity in the flow. This is 

expressed as q" = p + qbarrier, where q" is the streamfunction at 

time step 0, and V2$barrier = 0. Since the isolines of + and p coincide 

everywhere as the model approaches a steady state, a similar perturbation 

is added to Tso that the isolines of $' and p" approximately coincide, as 
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shown below. 

$ =$,3 P = P 0 

The finite difference expressions for e", PO, and 5' are then: 

NPB 
$y,j = iqj + c 

k=l 
(Alga) 

0 
pi,j = q,jl-1 + (Qg j 

, 

r;? 1 J E-p i,j (A19c) 

where, in equation (19b), j' > 2 is the lowest row number for which I$? - 1X 
1 

It should be noted that the potential flow scheme described above does 

not have a beneficial effect for every possible initial velocity profile 

uO(z). Specifically, if the velocity changes direction at upper levels, or 

is generally decreasing with height, then the code should be modified to 
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set I$’ and p” to $" and p" (except on the barrier, where e" E +c and p" s oc). 

Calculation of J(r,$), J(p,$), and !$ 

The long-term computational stabi?ity of the model depends on the finite 

difference form of the equations to be integrated, Arakawa (1966) devised 

a method to retard nonlinear computational instability in the equation 

a5 - = J(<,I,!I) by conserving mean vorticity, mean kinetic energy, and mean at 
square vorticity. This scheme is used by the program to calculate J(<,$) on 

the boundaries, and J(s,@) and J(p,$) at interior grid points. The finite 

difference form, Jij(c,$), depends on the location of the grid point, which 

may be one of ten types, as shown below. 

l \ 0 (interior) 
1 (top) 

7 (left outside 
corner) ,8 (right outside 

After applying boundary conditions, and using the fact that $J is constant 

on the upper boundary and $ 5 0 on the lower boundary, the finite difference 

expressions for J(r,,$) are as follows: 
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for type 0, Jij(5,.~) = -I: 12AxAz I34 i,j-1 + $i+l ,j-1 - VJ- 1 A+ 

+ (4 i-l,j-1 - G- l,j-I + $i-l,j+l +YJ i,j+l)'i-1,j 

+ (4J i+l,j + +i+l,j+l - +i-1,j - $i-l,j+l )‘i,j+l 

+ (4 i+l , j-l -$J i+l ,j + qi-l ,j-1 + +i-1 ,j)‘i ,j-1 

.I - +i+l , j+l )<it 

+ NJ- i+l,j -dJ i,j+l j5i+l ,j+l + (+i,j-1 + @i-l,j)si-l,j-l 

+ NJ. i,j+l -dJ i-1 ,j15i-l ,j+l + (-Gi+l ,j + Qi,j-l)5i+l ,j-I1 (A20a) 

for type 1, Ji j(z;,q) = -d--- 6AxAz NJ i,j-1 + $i+l,j-1 - 21bi,j)si+l,j 

+ h/J i-l ,j-1 - +i,j-1 + 2Qi ,jJri-l ,j 

+ NJ i+l ,j-1 +e i-l,j-l)'i,j-1 

+ (-+i , j-1 + +i,j)(ri-l , j-1 - z;i+l j-l)] 3 (A20b) 

for type 2, Jij(s,“) = -?--- 6AxAz [(+ i,j+l - $i+l ,j+lJ5i+l ,j 

+ (-Q- 1-1 ,j+l + Qi,j+l)si-l,j 

+ bJJ* i+l,j+l - pi-l,j+l)si,j+l + Qi,j+l(si-l 
'A20c) , j+l - <i+l 9 j+l" 

4 ,j 



for type 33 Jij(r,~) = &E [(-Qi-l 

, 
j-1 + $i-l ,j+l)‘i-l 

3 
j 

+ (-@i-l ,j - Qi-1 ,j+l )<i j+I + (q-i-1 

+ $i-l ,jtri-l ,j-1 - ci-l ,J+1)] 

, 
j-1 + *i-I ,j)'i,j-1 

for type 4, Jij(<,@) = -I!-- 6AxAz C(lc, i+l ,j-1 - Qi+l,j+l)si+l,j 

+ (YJ. i+l,j +e i+l,j+lJ5i,j+l + (+i+l,j-1 - ei+l,j)si,j-l 

+$ i+l ,j(<i+l ,j+l - si+l,j-l)l 

for type 5, Jij(SI~) = T& C~i-1 ,j+l (<i-l ,j - Ti,j+l >I 

for type 6, Jij(S,~) = $1~ II+i+l ,j+l (Si,j+l - Ci+l ,j)I 

(A20d) 

(A20e) 

(A20f) 

(A20g) 

for type 73 Jij(“,~) = $& CC-$, ,j+l - lJi+l ,j+l )ci+l ,j 

+ (-+-i-l ,j-1 + @i-l ,j+l + +i,j+l )<i-1,j + (+i+l,j+l - 

Q' I-1,j - +i-1 ,j+lJTi,j+l + (+i-l ,j-1 + Qi-1 ,jJ5i,j-I 

+lJ i,j+l(‘i-l,j+l - Ti+l,j+l) + 'i-l,j'ci-I,j-l - si-l,j+l)l (A20h) 

for type 89 Jij(C,$) = &E [($,+I ,j-l - $i ,j+l - Qi+l ,j+l)ci+l ,j 

+ (VJ. I-l,j+l + $i,j+l k i-1,j + ($i+l,j + +i+l,j+l - qi-l,j+l)5i,j+l 

+ (-$ i+l ,j-1 -GJ i+l,j)si,j-l + +i+l,j('i-l,j+l - 5i+l,j-l) 

+vJ i,j+l('i-l,j+l - 'i+l,j+l)' (A20i) 

for type 9, Jij(';,+) z 0 (A2Oj) 

For point type 0, Jij(p,$) has a similar expression to equation (A20a). 
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For all other types, Jij(P,~) = 0, which is equjvalent to fixing the value 

of p on the boundaries. This method appears to be the most suitable for 

modeling physically significant transi'ent motions 5n the system, When the 

Arakawa form of the Jacobian was used for J(p,$) on the boundaries, the 

system remained stable, but often approached a steady state at an unaccepta- 

bly slow rate, since p was free to vary on the boundaries while $ was fixed. 

The finite difference expressions for 2 are: 

= 0 

P. 
= 1 J 

- pi_l j 

Ax ’ 

= pi+l,j - pi,j 
Ax 

for point types 0,7,8 

for types 1,2,5,6,9 

for type 3 

for type 4. 

(A2la) 

(A21 b) 

(A2lc) 

(A2ld) 

Relaxation of V211, = 5 for + 

The finite difference form of the equation V2$ = z, is: 

dJ 

Ci- i,j = 
i-l,j + $*l,j - 2Qi,j + +i,j-1 + $i,j+l -2%,j 

(Ad2 (Ad2 
(A221 

The exact, noniterative solution of equation (A22), with periodic boundary 

conditions in x, may be expressed as the sum of discrete Fourier components 

c,(z) in x at each level of z: 
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qJ(x,z> = ; 

N,-1 

c c&de 
inkx 

x n-0 
(~23) 

2lT . where k = NxAx , x = PAX for p=O,. , ., Nx-1; z = qAz for q=l,. . ., NZ; 

Nx = NI - 2, the number of unique grid points in the x-direction; and 

N, = NJ - 2, the number of interior grid points in the z-direction,. 

The C,(Z) are calculated from the boundar,y values of $, and from the Fourier 

components d,(z) of 5 (where r(x,z) = & 
N -1 
Cx 

x n=O 
dn(z)einkx), through a system 

of finite difference equations which result from marching in the z-direction 

for each component n. 

The relationship between the Fourier components cn and dn is derived as 

follows: 

<(pAx,qAz) = ; 
Nx-1 

C dn(qAz)elnkpAx = a2 (pAx,qAz)+ a2Q(pAx,qAz) 
x n=O atpAd clAz)2 

(~24) '(L- -- a2 + 1 =- a2 
N,-1 

Nx (Ax)~ ap2 
-) 1 

(a~)~ aq2 n=O 
cn( qAz)elnkpnx 

1 Nx-" 

N ' 
d2 . d2 =- 

x n=O 
[c,(qAz) 2y dTs2 elnkpAx + einkPAx 1 - 

X2 
c (qAz>l. 

(Az)~ dq2 n 

Using a centered finite difference approximation for the second derivative, 

1 & ,inkpAx = e ink(p+l )Ax + eink(p-l)Ax _ 2einkpAx 

(ax)2 dp2 (Ad2 
(~25) 

= e inkpAx 2 (a [cos(nkAx)-11 
X2 

and 
1 d2 - - c (qAz) = 

cn[(qfl)Azl + c,[(q-l)Azl - 2cn(qAz) 

(Az)~ dq2 n ~Az)~ 
(~26) 
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Equation (A24) then becomes: 

N,-1 
inkpAx 

rJ,-1 
2 

=c{c - 
n=O 

[cos(~)~l]einkPAx 
n’q (Ax)~ x 

C 
+ n3q +I +c n,q-1 - 2cn 

(Az)~ ’ 
q ,inkpAx 

1 (~27) 

where c = c,,(qAz), 
w - 

Since each Fourier component responds independently 

of the others, the relationship under the summation holds separately for 

each n: 

d 
hq = cn'qe(Ax)2 

- 2cn ,q 2 [cos($!E) _ I] + Cw+’ + Cn4-’ 
(J-Q8 > 

X (ad2 

which becomes: 

-cn q-l + L-2 + ( Id2’c - c 3 w n ,q+l 
= (Az)‘dn q 

, 

2 
where (kt)2 = 2 0 [I - 

(Ad2 

cos (r 2w t 
X 

(A29) 

For each n=O,. . ., Nx - 1, equation (A29) comprises a set of NZ 

linear equations in NZ unknowns c 
w' 

for q = I,. . ,. NZ, and is equivalent 

to the matrix equation Acn = 6: 
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The d 
vi 

terms are found by taking the Fourier series of 

level z = QZ, q = 1,. . ., N,, and the c 
ho 

and c 
n,N,+l 

(A30) 

< at each interior 

terms are found by 

taking the Fourier series of $-at the upper and lower boundaries, as follows: 

Nx-1 

d 
w 

= c c( pAx,qAz)e-‘nkpAx 
p=o 

Nx-1 . 
C 

ho _ 
= ~~o$(PAX,O)e-‘nkPAx 

Nx-1 

'n,N,+l = c p=o 
$[pAx, (Nz+l)Az]ewinkpAx 

From this, the c, q terms for each n = 0,. 
3 

(A3la) 

(A31 b) 

(A3lc) 

. , NX - 1, for all q=l,, I ,,N, 
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C n 
= A-lb, for each n=O,. ..,N,-1 . (AW 

Then, I) is obtained by taking the inverse Fourier transform of the c : 
n4 

Nx-1 

$(pAx,qAz) = & C c 
x n=O nyq 

,inkpAx * (A33) 

The scheme for calculating the cn q for each n is the following: 
3 

(Ad2 ad 5 2:1+ ~ 
(Ad2 

[l-cos(+l? 
X 

are found by inverting the tridiagonal matrix A: 

up(1) = ad3 f(l) = b(1) 

then uR = & 
P q- 

uph) = ad + U2 

f(q) = b(q) - uR.f(q-l) 

for q=2,,,.,N, (A34) 

then cn N 
f(N,) 

,z=Upo 

and c n,q = w for q=NZ-l,...,l. * 
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Calculation of u, Ri, and w 

These quantities are calculated from $J, p, and 5 at any time step 

specified by the user. Since the values are not used for any subsequent 

time step, the finite difference equations for u are smoothed by using cubic 

spline function interpolation to calculate continuous first and second 

derivatives of $ and p in z, 

For each column of x, the procedure is to match the first and second 

derivatives of subsequent pairs of NJ-l cubic polynomials q;(z) (j = 2,.,., 

NJ), at NJ-2 internal grid points, zj(j=2,,..,NJ-I), 

tions at z1 and zNJ, Let these polynomials have the 

qj(z) = tVj + (‘-t)Vj_l + tAZ(I-t)[(kj-1 - dj)( 

where t = Cl&!- , dj = vj~~j-? , v 
j 

= the value of 

dq;(z;) 

J 

given boundary condi- 

form: 

-t) - (kj-dj)tI, (A35) 

$ or p at point j, and 

kj = Jdz J (Dahlquist and Bjorck, 1974). Then the expressions 

first and second derivatives in z become: 

dqj (Z> vj-vj-l + 

dz = AZ (3t'-4t+l)(kj-,-dj)+(3t2-2t)(kj-dj 1 (A361 

d2qj(z) 
and ___ 

dz2 
=A; [(6t-4)(k j_l-dj)+(6'-2)(kj-dj)I * 

These polynomials satisfy the relationships: 

dqj+l (Zj > _ dqj(Zj > 

dz - dz = kj for j=2,...,NJ-1 

for the 

(A37) 

(A38) 



d2q.(z.) d2qj+l(zj) 
and A = 

dz2 dz2 
= g [-4kj+6dj+,-2kj+l] for j=2,., . ,NJ-1 

provided that kj-,+4kj+kj+,=3(dj+,+dj) , 

(A-1 

(A401 

The boundary conditions are: 

d 
2 

q2(zl) 

dz2 

_ a2v1 _ a, 

az2 
= & [-4kl + 6d2 - 2k2] or 2kl+k2=3d2- $@ 

(A4la) 

d2qNJ(ZNJ) a2vNJ 
dz2 

z-z b' 
az2 

= & [2kNJ-, - 6dNJ + 4kNJ] or 

kNJ-l 
b'Az + 2kNJ = 3dNJ + 2 (A4lb) 

Equations (A4la), (A40), and (A4lb) comprise a set of NJ linear equations in 

NJ unknowns k j, j=l,,.., NJ, and are equivalent to the matrix equation Acn=b: 

. . . 

/ a 'AZ 3d2- 2 

3(d2+d3) 
. 
. 
. 

3(dNJ-l NJ -d ) 

\b'az+3d 
2 NJ 

(~42) 

The & = kj are found by inverting the tridiagonal matrix A according to 

the following scheme: 
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up(l) = ad(l) 

f(l) = b(1) 

ue=.* 

u,(j) = a,(j) + uR 

f(j) = b(j) + u,.f(j-1) 

f(NJ) 

then kNJ = up(NJ) 

for j = Z,..., NJ (A43 > 

and k. = 
f(j) - kj+l for j = NJ - l,...,l 

J u,(j 1 

where ad(t)=2, a,(j)=4 for j=2,...,NJ-1, and ad(NJ)=2. 

Then, by equation (39) the second derivative of vj becomes: 

2 av. 
a ‘j - ’ c-4 & + 6( - _ ..- 
az2 *’ 

vj+l-vj)-2 av j+l Az 71 for j=2,...,NJ-1 (A44) 

The finite difference expressions for u = -g and Ri = 

(i&)2 
az2 

are as follows: 

U. = 
1 J 

(A45) 

aPi j 

Riij= -? A 
a2Qi j 2 

, pi,j az / (-A) 
az2 

(A46) 

The first derivative of @ is obtained for each column (i=l,.. .,NI) by 

applying equation (A42) with di j E 
Qa ‘-$i ,j-1 

lSJ Az , a'- 
') q,, , and 

b'_ q NJ Then the second derivative of $ may be expressed as: 
3 - 
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a*dJi , j 
= k c-4 (A47) 

The first derivative of p is obtained for each column (i=l,...,NI) 
Pm ' - Pi j-1 

by applying equation (A42) with di j z lyJ az ' , a' E 0, and b' E 0. 3 
a!- The finite difference expression for w = ax IS: 

$' 

'Lj = 
l+l,j - Q-i-1 ,j 

2Ax (A48) 

This equation may be solved by expressing $(x,z) and w(x,z) as a sum of 

discrete Fourier components c,(z) and d,(z) in x at each level of z: 

N,-1 

$(x,z) = f C cn(z)einkx (A491 
x n=O 

Nx-1 

w(x,z) = k C dn(z)einkx 
x n=O 

(A50) 

ZTr where k = - 
NxAx ’ x = PAX for p=O,, , , ,N,-1 , and N,=NI-2. The rela- 

tionship between the Fourier components cn and dn is derived as follows: 

Nx-1 

w(pAx,z) = $ c 
x n=O 

dn(z)e 

Nx-1 

L.-a, cn(z)e 
inkpAx 

Nx*x aP n=O 
c,(z) 1 d e inkpAx 

Ax dp (A51 > 

,ink(p + 1)Ax _ ,ink(p - 1)Ax 

20x 1 

N; Xr,’ ’ 
=- c,(z) 2 sin(nkAx)e i nkpAx 
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Since each Fourier component responds independently of the others, the 

terms under the summation are equal for each n: 

d,(z) = c,(z) & sin(nkAx) (~52) 

The c,(z) terms are fo'und by taking the Fourier series of I/J at each 

level of z: 

Nx-1 

c,(z) = C $(pAx,z)e -inkpAx 

n=O 
(A53) 

Then equation (A52) yields d,(z), and w is obtained by taking the inverse 

Fourier transform of the dn(z): 

N,-1 

w( pAx,z) = k C d,(z)e 
inkphx 

x n=O 
(A54) 
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DESCRIPTION OF CARD INPUT DATA 

Space and Time Data " 

Space and Time Card: NI,NJ,NT,NPB,IBT,ISAVE,DELTAX,DELTAZ,DELTAT 

(format: 614,lP3D10.2) 

NI 

NJ 

NT 

NPB 

Number of grid points in the x-direction (i.e., number of columns). 

Due to restrictions imposed by the fast Fourier transform 

routine, NI must equal 2" + 2, where n is a positive integer. 

Number of grid points in the z-direction (i.e., number of rows). 

Number of time steps. 

Number of grid points on the surface of the barrier, excluding 

points on the lowest row. Refer to explanation of barrier 

IBT 

data below. 

Beginning time step. If IBT = 0, then read wind velocity and 

stability data. If IBT.NE.0, then the data saved at time 

step IBT from a previous run is to be input from a tape or 

permanent file. 

ISAVE Data retention indicator. If ISAVE = 1, then data at the last 

time step is to be saved on a tape or permanent file. Other- 

wise, set ISAVE = 0. 

DELTAX Grid spacing in the x-direction (in meters). 

DELTAZ Grid spacing in the z-direction (in meters). 

DELTAT Time step interval (in seconds). 
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Barrier Data 

Barrier Card(s): (IB(I),JB(I),I=~,NPB) 

(format: 2014) 

IB(I) Column number of the Ith point on the barrier. 

JB(I) Row number of the Ith point on the barrier. 

As shown in the example below, IB(1) and JB(1) are to be specified in a 

continuous fashion along the surface of the barrier, beginning with the 

leftmost grid point in the second row, and ending with the rightmost grid 

point in the second row. The surface of the barrier must connect adjacent 

grid points only horizontally or vertically, never diagonally. No barrier 

grid point may ever be specified in the first row. The position and shape 

of the barrier may be arbitrary, but only.one barrier is permitted, and its 

width may not exceed (NI-4) horizontal grid intervals. On the barrier 

pictured below, NPB = 16, with IB (1) = 5 JB(1) = 2, IB(2) = 6, JB(2) = 2, 

etc. The width of the barrier is 7 horizontal grid intervals. 

. . , . . . I * . . . I , * . . 

. . . . l , 1 . 2. , . . , 
. . , l 13. * l . , 

. . . . l 

l *‘-’ 9 

2’ l ' -1 
. . . , 4 

column 1 column 5 column 12 
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Graphical Output Data 

The output of the program consists of shaded, line printer graphical 

displays of the streamfunction ($), density (p), vorticity (z;), horizontal 

velocity (u), vertical velocity (w), or Richardson number (Ri) at any time 

step specified by the user. The shading consists of alternating clear areas 

and printed areas. To emphasize aspects of the flow, the user may output 

any segment of the entire grid, vary the vertical scale of the printout, or 

vary the resolution of the shading. 

Grid Plot Card: IS,JS,IN,JN,NJSMl 

(format: 514) 

IS First grid point in the x-direction to be p 

JS First grid point in the z-direction to be p 

IN Number of grid points in the x-direction to 

JN Number of grid points in the z-direction to 

NJSMl 

Shading Level 

NPSILV 

NRHOLV 

NZTALV 

NULV 

NWLV 

NRILV 

54 

lotted. 

lotted. 

be plotted. 

be plotted. 

Number of lines of print between two vertical grid points. 

Card: NPSILV,NRHOLV,NZTALV,NULV,NWLV,NRILV 

(format: 614) 

Maximum number of levels of shading on $ graphs. 

Maximum number of levels of shading on p graphs. 

Maximum number of levels of shading on 5 graphs. 

Maximum number of levels of shading on u graphs. 

Maximum number of levels of shading on w graphs. 

Maximum number of levels of shading on Ri graphs. 



- 

$ Plot Card: IPSIGR( I) (1520) 

(format: 2014) 

IPSIGR Sequence of time steps at which $ is to be printed. 

p Plot Card: IRHOGR(1) (1520) 

(format: 2014) 

I RHOGR Sequence of time steps at which p is to be printed. 

T; Plot Card: IZTAGR( I) (1520) 

(format: 2014) 

I ZTAGR Sequence of time steps at which r is to be printed. 

u Plot Card: IUGR( I) (1520) 

(format: 2014) 

IUGR Sequence of time steps at which u is to be printed. 

w Plot Card: IWGR( I) (190) 

(format: 2014) 

IWGR Sequence of time steps at which w is to be printed. 

Ri Plot Card: IRIGR(1) (190) 

(format: 2014) 

IRIGR Sequence of time steps at which loglo is to be printed. 
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Note that all variables need not be output at the same time steps,. but that 

all time steps must be in order for any one variable. If a particular 

variable is not to be printed at all during 'a job, then a "-1" must be 

punched in columns 3 and 4 of the appropriate card. Time step 0 is a 

legitimate time step at which any field may be printed. 

If IBT.NE.0, there are no more cards to be read beyond this point. 

Wind Velocity Data 

This data determines the initial values of p(z) and T(z). 

Wind Card: ICASE 

(format: 14) 

ICASE Wind velocity profile indicator. 

If ICASE = 1, this is a sounding data case, and temperature and pressure 

data are to be read in addition to wind data. 

Sounding Cards: U(J),T(J),P(J) for J = 1 ,..., NJ 

(format: lP3010.2) 

U(J) 

T(J) 

Horizontal wind at row J (in knots) 

Temperature at row J (in 'C>. 

P(J) Pressure at row J (in mb). 

If ICASE = 1, there are no more cards to be read beyond this point. 

If ICASE = 2, this is a constant velocity profile case. 
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Velocity Card: Ul 

(format: lPD10.2) 

Ul Horizontal velocity at all levels (in m/set). 

Then, U(J) = IJl for J = 1,. . . ,NJ. 

If ICASE = 3, this is a constant shear profile case. 

Velocity and Shear Card: Ul,C 

(format: lP2D10.2) 

Ul Horizontal velocity at row 1 (in m/set). 

C -1 Vertical shear (in set ). 

Then, U(J) = Ul + C * OELTAZ * (J - L) for J = l,...,NJ. 

If ICASE = 4, this is an exponential profile case. 

Velocity and Shear-Card: Ul,U2,C 

(format: lP3D10.2) 

Ul 

u2 

C 

Constant velocity to be added to the profile at all 

levels (in m/set). 

Base horizontal velocity (in m/set). 

Vertical, shear divided by U2 (in m-') 

Then, U(J) = Ul + U2 * EXP(C*DELTAZ*(J-L)) for J = l,...,NJ. 

If ICASE = 5, this is a hyperbolic tangential profile case. 

Velocity Card: -- Ul,U2,LI,MDZ 

57 

- 



(format: lP2Dl0.2,214) 

Ul 

u2 

Horizontal velocity to be added to the profile at 

all levels (in m/set). 

Base horizontal velocity (in m/set). 

LI 

MDZ 

Row number at which the profile has its inflection 

point. 

Number of rows away from the inflection point at 

which Ul is deflected by the amount U2. The sign 

of MDZ determines the sign of (U(NJ)-U(1)). 

Then, U(J) = Ul + U2 * DTANH((J-LI)/MDZ) for J = 1,. . .,NJ. 

If ICASE = 6, this is a case, other than a sounding data case, for which 

the velocity is to be specified at each row. 

Velocity Card(s): U(J) for J = l,...,NJ 

(format: lP8D10.2) 

U(J) Horizontal velocity at row J (in m/set). 

Stability Data 

This data determines the initial values of F(z). 

Stability Card: JCASE 

(format: 14) 

JCASE = Stability profile indicator. 
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IF JCASE = 1, this is a constant lapse rate case. 

Lapse Rate Card: GAMMA, TO 

(format: lP2D10.2) 

GAMMA Lapse rate (in 'C/m). 

TO Reference temperature (in 'C) 

Then, s(J) = (DALR - GAMMA) / TO for J = l,...,NJ, 

where DALR = dry adiabatic lapse rate. 

If JCASE = 2, this is a constant Brunt-Vaisala frequency case. 

Frequency Card: BV 

(format: lPD10.2) 

BV 
-1 Brunt-Vaisala frequency (in set ). 

Then, S(J) = BV ** 2 / G for J = l,...,NJ; where G = 

acceleration of gravity. 

If JCASE = 3, this is a constant Richardson number case. 

Ri Card: RI 

(format: lPD10.2) 

RI Richardson number. 

Then, S(1) = R * (U(1) - U(0)) ** 2, where 

R = RI / (G * DELTAZ ** 2), 

S(J) = R * (U(J+l) - U(J-1)) ** 2 / 4 
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for J = 2, . . ..NJ-1. and 

S(NJ) = R * (IJ(NJ) - U(NJ-1)) **2. 
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Summary of input card data 

r 

++w 
stability wind 

data 
(ifN;C$E 

velocity 
data 

-Y-P 
if IBT = 0 graphical output data barrier data space/time data 
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FLOW OUTLINE OF THE PROGRAM 

A. read, write 

MT = IBT 

IET.= IBT + NT 

IB25 = 0 

AT = AT * 2 

B. read, write 

C. read, write 

0. read, write wind velocity data, and calculate u" 0. read, write wind velocity data, and calculate u" 

E. calculate p E. calculate p 

F. read, write stability data, and calculate So F. read, write stability data, and calculate So 

G. calculate 7 G. calculate 7 

define ad define ad 

H. solve 02$k=<k for each vertical level k on the H. solve 02$k=<k for each vertical level k on the 

surface of the barrier, and calculate surface of the barrier, and calculate (Fk)" (5 )' k 
I. calculate B I. calculate B 

calculate Fourier coefficients c calculate Fourier coefficients c 

J. initialize $'. PO, and 5' J. initialize $'. PO, and 5' 
n,Natl n,Natl 

J 17 
/ . 

I 
K. read VJ, P, 5, 

;;“, ($)‘, 8, 
ITYPE, ad, and 

Cn N +, from tape 
' I 

or disk 
I I 

I 
I I ‘ ‘ 

no no 

L. calculate graphical output for time step MT L. calculate graphical output for time step MT 

@ 
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M. write $, p, 5, 

E",(~k)o,8,1T~~E; 

ad' and c 

onto 
n,NZ+l 

tape or disk 
t 

1 

el STOP 

N. (old p)=p, (old <)=< 

AT = AT / 4 

,, yes 

I 

9. 5 = (new 5), P = (new PI 

R. calculate new $ 

MT = MT + 1 

0. calculate J(c,$),J(p,$),(new S),(new 0) 

I 

1, 
no 

l, 9s 

P. (old c) = 5, (old p) = p 
IB25 = 1 
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llllllllllll III llllllllll II llIllllll 

LIST OF VARIABLES IN THE PROGRAM 

For reference, the variables are briefly described in alphabetical 

order, with array dimensions, and symbolic references, if any. 

A(N1 ,NJ) 
AD(N1) 

AJZP 
AK(N1) 
ARGI 

AS( NJ) 
Al through A9 

BETA(NPB,NPB) 

BLANK4 

BV 

Bl through B8 

C 

CDZ 

CFAC 

CKTMPS 

CR1 

DALR 

DELTAT 

DELTAX 

DELTAZ 

DMGDTO 

DRHO 

64 

Variables in the Main Routine 

Temporary array for storage of fields to be plotted. 

Diagonal elements of the matrix used to relax V*$ = 5 
for x. (a,) 

Jacobian for 5 and $, J(c,$) 
Coefficients used to calculate vertical velocity from $. 

Argument used for sinusoidal functions in AD and AK. 

Diagonal elements of the spline matrix. (a,) 

Temporary storage for values of $ at selected grid points. 

Coefficients used to calculate a. (8) 

4 blank print symbols. 

Brunt-Vaisala frequency, (N) 

Temporary terms for the calculation of Jacobian terms. 

Shear in horizontal velocity. (c) 

C divided by DELTAZ. 

Cofactor sign divided by the determinant of the a matrix. 

Conversion factor from knots to meters/set. 

Constant Richardson number, 

Dry adiabatic lapse rate, (Yd) 

Time step interval, (At) 
Grid interval in the horizontal direction. (Ax) 
Grid interval in the vertical direction. (AZ) 

(DALR - GAMMA) / STMP. 

Density differential in the horizontal, 

- 



- - 

DXM2 

DXSQ 

DZD2 

DZD6 

DZM2 

DZSQ 

DZ2DX2 

FAC 

FACM2 

FACM4 

FACM43 

FTI(NI ,NJ) 
FTR(N1 ,NJ) 
Fl (NI) 
F2(NI ) 

G 

GAMMA 

I 

IB( NPBP2) 

IBT 
IB25 
ICASE 

IDUM(8) 
IE 
IEB 
IET 
I EW 
IEXP2 

IL 

DELTAX multiplied by 2, 
DELTAX squared. 

DELTAZ divided by 2. 

DELTAZ multiplied by 6. 

DELTAZ multiplied by 2. 
DELTAZ squared, 

DZSQ divided by DXSQ. 

-1 / (12 * DELTAX * DELTAZ) 

FAC multiplied by 2, 
FAC multiplied by 4. 

FAC multiplied by 4/3. 

Imaginary part of the Fourier transform of $, (Im(Cn q 
9 

Real part of the Fourier transform of $. (Re(c n q)) , 
Utility array used by subrouting CALCW. 

Utility array used by subroutine CALCW. 

Acceleration of gravity. (g) 

Lapse rate. (y) 

An index, 

Column numbers of points on the barrier. 
Number of the first time step, 

Indicator of an even multiple of 25 time steps, 

Wind velocity profile indicator. 

Filler array for tape or disk read/write. 
Number of the last column to be plotted, 

Rightmost column number on the barrier, 
Number of the last time step, 

Number of the last column at which w is calculated, 

Power of two of the number of unique horizontal grid 

points, Nx, 

Number of print symbols to be plotted in a line of graphic 

output, 
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IN 
INMl 
IPSIGR(20) 
IRHOGR(20) 

IRIGR( 20) 

IS 

ISAVE 

ISB 
ISW 
ITYPE(NI,NJ) 

IUGR( 20) 
IWB 
IWGR( 20) 
IZTAGR(20) 

Number of columns to be plotted. 

IN minus 1. 

Time step numbers at which $ is plotted. 

Time step numbers at which p is plotted. 

Time step numbers at which loglo is plotted. 

Number of the first column to be plotted. 

Tape save parameter. 

Leftmost column number on the barrier. 

Number of the first column at which w is calculated, 

Grid point type. 

Time step numbers at which u is plotted. 

Horizontal grid point width of the barrier. 

Time step numbers at which w is plotted. 

Time step numbers at which 5 is plotted. 

J An index 

JB( NPBP2) Row numbers of points on the barrier. 

JCASE Stability profile indicator, 

JE Number of the highest row to be plotted. 

JMAX Highest row number on the barrier. 

JMAXMl JMAX minus 1. 

JN Number of rows to be plotted, 

JS Number of the lowest row to be plotted, 

K 

KM2 

An index 

K minus 2. 

L 
LI 

An index. 

Row number at which the hyperbolic tangential profile 

has its inflection point. 

LINE1 4( 33) Part of annotation on graph of field. 

LINE24(33) Line of print symbols associated with a level of the grid. 

LINE3(132,NJSMl) Logical symbol equivalent of LINE34. 
LINE34(33 ,NJSMl ) Lines of print symbols between two levels of the grid, 
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LINE48( 14) 
LINE58(14) 

LINE68(14) 

M 

MDZ 

MT 

N 

NAME(2,6) 

NEWRHO(NI,NJ) 

NEWZTA(NI,NJ) 

NI 

NIMl 

NIM2 
NIPA 

NIS 

NISMl 

NJ 

NJMl 

NJM2 

NJSMl 

NPB 

NPBMl 

NPBPl 

NPBP2 

NPSIGR 
NPSILV 

NRHOGR 

Part of annotation on shading value scale. 

Part of annotation on shading value scale, 

Part of annotation on shading value scale. 

An index. 

Number of rows away from the inflection point at which 

Ul is deflected by the amount U2. 

Time step number. 

An index. 

Titles of quantities on graphical output. 

Temporary array for newly calculated density. 

Temporary array for newly calculated vorticity. 

Number of grid points in the horizontal direction, or 

number of columns. 

NI minus 1. 

Number of unique columns = NI minus 2. 

Number of unique columns, plus the horizontal grid point 

width of the barrier. 

Number of print symbols from one horizontal grid point 

to the next. 

NIS minus 1. 

Number of grid points in the vertical direction, or 

number of rows, 

NJ minus 1. 

NJ minus 2. (N,) 

Number of print lines between two vertical grid points. 

Number of grid points on the surface of the barrier 

NPB minus 1. 

NPB plus 1. 

NPB plus 2. 

Next time step number at which $ is to be plotted. 

Maximum number of levels of shading for 9 graphs. 

Next time step number at which p is plotted. 
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NRHOLV 

NRI LV 
NT 

NUGR 

NULV 

NWGR 

NWLV 

NZTAGR 

NZTALV 

OLDRHO(NI,NJ) 
OLDZTA(NI,NJ) 

P 

PIM2 

PSI(NI,NJ) 
PSIAUX(NIPA, 

N JM2 ,JMAXMl) 

PSIBFT(NIM2,2) 
PSIM(NPB,NPB) 

PSIO(NJ) 

RDCP 

RHO(NI,NJ) 

RHOO( NJ) 
RI(N1 ,NJ) 
RI DZSG 

SbJJ) 

SBV 

SPR 

SPSI 
SRHO 

SRTP 
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Maximum number of levels of shading for p graphs. 

Maximum number of levels of shading for loglo graphs. 

Number of time steps. 

Next time step number of which u is to be plotted. 

Maximum number of levels of shading for u graphs. 

Next time step number at which w is to be plotted, 

Maximum number of levels of shading for w graphs, 

Next time step number at which 5 is to be plotted. 

Maximum number of levels of shading for 5 graphs. 

Density from the previous timestep. (old p) 

Vorticity from the previous timestep. (old 5) 

Pressure. (P) 

IT multiplied by 2. 
Streamfunction. ($> 

The solution to V2+k = ck for each vertical level on the 

surface of the varrier. (($k),) 

Fourier transform of the upper boundary of $. (cn(Nz+l)) 
Barrier influence coefficient matrix. (a) 

(P(z) 1 Initial unperturbed streamfunction. 

R/c = 217 

Den!ity. (p) 

Initial unperturbed density, 

Richardson number, (Ri) 

CRI / (DELTAZ ** 2 * G). 

(iaz )) 

Initial stability. (S’(z)) 
Stability in the constant Brunt-Vaisala frequency case. 

Pressure at the lower boundary. (p,) 
Streamfunction on the lower boundary. (+,) 
Density on the lower boundary, (p,) 
SRHO * STMP / SPR ** RDCP. 



STMP 

SYM(53) 

T 

TM(NPB,NPB) 

TO 

U(N1 ,NJ) 
UAl (NJ) through 

UA4(NJ) 

UA5(NJ) 
UA6( NJ) 
UO( NJ) 
Ul 
u2 

W(N1 ,NJ) 

ZETA(NI,NJ) 

AD( NJ) 

B(NJ) 

@NJ) 

DB 

DT 

DPSIl 
DPS12 

DRHO( NJ) 
D2PSI(NJ) 

Temperature at the lower boundary. (T,) 

Symbols used in printout of fields. 

Temperature. (T) 

Temporary array formed from PSIM. 
Base temperature for constant lapse rate atmosphere. (To) 

Horizontal velocity. (u) 

Utility arrays used by subroutines FA, CALCRI, and CALCU. 

Utility array used by subroutines FA and CALCRI. 
Utility array used by subroutine CALCRI. 

Initial horizontal velocity. how 1 

Horizontal velocity to be added to u at all levels. (u,) 

Base horizontal velocity for profiles. (u,) 

Vertical velocity. (w) 

Vorticity. (c) 

Variables Used Uniquely in Subroutine CALCRI 

Diagonal elements of the spline matrix. (ad) 

Elements of the b matrix. (b) 

Backward-difference derivatives of $ or p with respect 

to z. (d) 

Term which incorporates vorticity into bottom boundary 

condition. (a'Az/2) 

Term which incorporates vorticity into top boundary 

condition. (b'Az/2) 

Temporary storage variable for first derivative of $. 

Temporary storage variable for first derivative of $. 

First derivative of p in the vertical. bdaz) 

Second derivative of $ in the vertical. (a*$/az*) 
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R 

UL 

UP(NJ) 

Z(NJ) 

AD(NJ) 

B(NJ) 

D(NJ) 

UL 

Z(NJ) 

FTl (NIM2) 
FTR( NIM2) 
T 

BI(NJ) 
BR( NJ) 
UL 

UP( NJ) 

ZI (NJ) 

ZR(NJ) 

Temporary storage variable for the Richardson number. 

Temporary variable used in inverting the spline matrix. 

(u,) 
Temporary array used in inverting the spline matrix. (up) 

Temporary array used in inverting the spline matrix. (f) 

Variables Used Uniquely in Subroutine CALCU 

Diagonal elements of the spline matrix. (a,) 

Elements of the b matrix. b) 

Backward-difference derivative of $ with respect to z. (d) 

Temporary variable used in inverting the spline matrix. 

(u,) 

Temporary array used in inverting the spline matrix. 0) 

Variables Used Uniquely in Subroutine CALCW 

Imaginary part of the Fourier transform of $. (Im(cn(z 
Real part of the Fourier transform of $. (Re(c,,(z))) 

Temporary variable used to store Fourier coefficients. 

Variables Used Uniquely in Subroutine FA 

>I> 

Imaginary part of the elements of the b matrix. (Im(b)) 
Real part of the elements of the b matrix. (Re(b)) 

Temporary variable used in inversion of the relaxation 

matrix. (ua ) 

Temporary array used in inversion of the relaxation 

matrix. (up) 

Imaginary part of the temporary array used in inversion 

of the relaxation matrix (Im(f)) 

Real part of the temporary array used in inversion of the 

relaxation matrix. (Re(f)) 

70 



Variables Used Uniquely in Subroutine FAST 

Except for the addition of the calling parameter INV, this subroutine 

is the fast Fourier transform subroutine from the UCLA BFID library. The 

calling parameters are: 

INV 

M 

N 

X(N) 

Y(N) 

+1 3 the Fourier transform is calculated. 

-1, the inverse Fourier transform is calculated. 

Power of two of N. 

Dimension of the complex array (X,Y). 

Real part of the array to be transformed, and also the 

real part of the transform. 

Imaginary part of the array to be transformed, and also 

the imaginary part of the transform. 

Variables Used Uniquely in Subroutine GE 

D 

IPl 

Nl 

N2 

N2Ml 

T 

X(Nl,Nl) 

XMAX Largest element in a row of the matrix. 

Y Temporary variable for the storage of XMAX. 

Ratio of the element beneath the pivotal element to the 

pivotal element. 

Lowest row number for which an element beneath the pivotal 

element is to be zeroed out. 

Dimensions of the array X. 

Dimensions of the square matrix for which the determinant 

is calculated. 

N2 minus 1. 

Temporary variable for the exchange of column elements. 

Array from which the matrix is selected for calculation 

of the determinant. 
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D 

DIFI 

DI FJ 

DL 

DV 

E 

EL 

IDL 

IEL 

IMAX 
IMIN 
LINE2(132) 

NEW(132) 

NQ 
OLD( 132) 

SIGPRT 
TEMP 

VINC 
Vl (13) 

V2(13) 

X(N1 ,NJ) 

XINC 

Variables Used Uniquely in Subroutine GRAFIC 

Temporary value increment between levels of shading. 

Difference in value from one print character in a line 

to the next. 

Number of levels of shading from one vertical grid point 

to the next. 

LOGlO( 

Number of print lines from one vertical grid point to the 

next multiplied by XINC. 
Largest absolute value to be plotted. 

LOGlO( 

LOGlO(XINC). 

Base part of the values of the lines separating levels 

of 

Number 

Number 

Logical 

shading. 

of levels of shading between zero and XMAX. 

of levels of shading between zero and XMIN. 

symbol equivalent of LINE24. 

Minimum-adjusted value at each print character in the 

line corresponding to the present vertical grid point. 

Number corresponding to variable to be plotted. 

Minimum-adjusted value at each print character in the 

line corresponding to the previous vertical grid 

point. 

Significant part of XINC. 
Temporary variable for storage of the symbol index. 

Increment between the values of Vl and V2. 

Significant part of the values of the lines separating 

levels of shading. 

Significant part of the values of the lines separating 

levels of shading. 

Array to be plotted. 

Value increment between levels of shading. 
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- 

XMAX 

XMIN 

Y 

BLANK 

BLANK4 

BLANK8 

DASH 

DOT 

LINEl(132) 

LINE2(132) 

LINE4(112) 

LINE5(112) 

LINE6(112) 

NAME1(2,6) 

NAME2(2,6) 

NFB 

SYMl(53) 

SYM2(53) 

Maximum value in the field; also, maximum value to be 

plotted. 

Minimum value in the field; also, minimum value to be 

plotted. 

Temporary storage variable for X array elements. 

Variables Used Uniquely in Subroutine GRAFIN 

1 blank symbol. 

4 blank symbols. 

8 blank symbols. 

Symbol used in annotation of shading value scale. 

Symbol used in annotation of graph. 

Logical symbol equivalent of LINE14. 

Logical symbol equivalent of LINE24. 
Logical symbol equivalent of LINE48. 
Logical symbol equivalent of LINE58. 
Logical symbol equivalent of LINE68. 
Titles of quantities on graphical output. 

Titles of quantities on graphical output. 

First word in LINE24 and LINE34 which is to be filled with 

blank symbols. 

Symbols used in graph of field. 

Symbols used in graph of field. 

Variables Used Uniquely in Subroutine PTSPEC 

None. 

Variables Used Uniquely in Subroutine SP 

ALPHA 

X(NI,NJ) 
Barrier influence coefficient. (~1) 

Variable for which a superposition solution is required. 

(Icl or PI 

73 



x0 Value of the array X on the lower boundary. 

@ll or ;Pll 1 
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CONSIDERATIONS IN RUNNING THE PROGRAM 

The user must specify all pertinent dimensions at the beginning of the 

first routine. The variables whose dimensions are subject to change are: 

PSI(NI,NJ) 

RHO(NI,NJ) 

ZETA(NI,NJ) 

OLDRHO(NI,NJ) 

OLDZTA(NI,NJ) 

NEWRHO(NI,NJ) 

NEWZTA(NI,NJ) 

U(NI,NJ) 

W(NI,NJ) 

RI(NI,NJ) 

A(NI,NJ) 

PSIAUX(NIPA,NJM2,JMAXMl) 

FTR(NI,NJ) 

FTI(NI,NJ) 

PSIBFT(NIM2, 2) 

UO(NJ) 

S(NJ) 

RHOO(NJ) 

PSIO(NJ) 

AD(NIM2) 

AK( NIM2) 

Fl(NIM2) 

F2(NIM2) 

AS(NJ) 

uAi (NJ) 

UA*(NJ) 

UA3(NJ) 

UA4(NJ) 

UA5(NJ) 

UA6(NJ) 

BETA(NPB,NPB) 

PSIM(NPB,NPB) 

TM(NPB,NPB) 

LINE34(33,NJSMl) 

ITYPE(NI,NJ) 

IB( NPBP2) 

JB(NPBP2) 

LINE3(132,NJSMl) 

where NI, NJ, NPB, NPBPE, NIM2, NJM2, NIPA, JMAXMl, and NJSMl are defined 

in the previous section. 
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On the IBM 360/91, the approximate execution space is: 60 * NI * NJ + 

8 * NIPA * NJM2 * JMAXMl + 6 * NI + 11 * NJ + 80K IBM bytes, or roughly, 

8 * ( J,MAXM~ + 8) * NI * NJ + 80K IBM bytes. Approximately 7K bytes of 

additional space are required for each tape used in conjunction with the 

program, for buffering purposes. 

On the IBM 360/91, the approximate execution time is: .00013 * NI * 

NJ * NT * (1 + .0017 * NPB ** 2) + 2 seconds. The running time is not 

appreciably increased by moderate increases in the amount of graphical output. 

A version of this program exists which is compatible with CDC systems. 

A SAMPLE CASE 

Consider the Lyra case for u. = 25 m/set, To = 250K, and y = 0 on a 

64 x 24 grid for 80 timesteps, with Ax = AZ = 625 m, At = 10 set, and a 

2500 m high by 1875 m wide rectangular barrier. Suppose that the entire 

field of $ is to be output on a vertically exaggerated scale at time step 

60, and $, p, 5, u, w, and loglo are to be output at time step 80, with 

no data to be saved. The source program deck, the data card deck, and the 

actual output from this case are displayed on pages 77 throuqh 97. The esti- 

mated execution space and time on the IBM 360/91 are 237K and 17 seconds. 
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Listing of source program 

- . -.--. ---- 
AEA~*B-PSI 

lu-1 IrrT 9EAL+8(4--H.O-ZJ .-- 

I 

,(..66,24),-~n;r( 6(j,24 ~-r--r.-~-~^-7’-----------------.-- 

CLljRHOC 66.24) ,3L>ZTA( ; 
LC IA, CO.L9,. 

NEWZTA( 66.24) .F2( 64). 
~6.24J.NEWRtiDt bb.24). 

3 
U( 66.?%.J.Wl 5_5*24J.h_I(__b_t.Z4J,A( 66~24). ___ __....__. ____ 
PSI4UXt h7.22.41.’ 

: 

TR( b5.24J.FTIf 6&.i4).=>13Fi( 64.2). 
U0(24J.S(24J.?H30(24J,PSIO~24J .AD( 64) .*I(( tile .Fl( 64). 
AS(24J .UAI (24J.JA2t24J.J .- 

-.- $ ----- - 
A3(24J.UA4(24).J4;l24J.UA6(24J: 

RFTA~13.IO~.PSIHl1O.IOJ.TW~IO.~O~.~ 
LINf49(14J .ilqC58( 14J.iltdE68f 14) 

__ 

REAL+4 LlNEl4(33JsLIYC20(33J.LINE34t33.2J..~A4E(2.bJ. 
I RLANK4 

I NTEG sER*4 IPSIGR( 20). IHH3GR~20J.1ZTAG -.- 
T -- --- -- 1RISc((2 

m(2oJ. I 
‘01 i7TYDEI -66-;?63 .Ii=l( 

‘G2f 20). 1 rGR( 20). 
12) .-23( : - 

LOGIC 
-2); iJJM(w) ---. 

AL*1 LINE3( I 32.2J.SYHt53J 
EQUIV ALENCE (LIIJE :3(lJ,LINE34(1J 

. ,ne,, . . 
J.(NEJZTAI IJ.J[lJ**( IJ*i?I(lJJ. 

: ‘J? S-L I 
C%~MMDN/CI~C%LTAX~ Dx 

:‘,,T:?; !.I.; (.N~WRt$J( 1 JtFTI(l *A(1 2J .- 
.>ZU2.DZS 

--. -.-- 
d.DZD6. 

.._ 
“L.d_L...L 

1 IS.JS,IE.JE’.IS~.It 
.N1 4l.NJ’dl ,lEXPZ, 

W .IdPDPI. J MAX. ISU 1El.3 
: OYYON/C2/LINE4~.LIN~5tt.LINC bA.LINEl4 .LINC24 . NAME I 

UT. ,.I- I *’ -” ’ .‘-- i’-’ SYM 
SPECt FY. PHYSi CAL FA 

tNYI.‘~IS.NISHI.I~ 
CTGRS--- -- 

G = 9 
CKTHP 
SPS, 

;‘= 1852. / 
= n- 

STYP 
S=R = 
SRTP 

= 27ir- 
1 .OD:05 

= SRI-H-I * STY -. .__ 
3. --- -- OALR-=-9.-766--O: 

RDCP = 2. / 7. 

3600. 
.- -.- -. .-- 

P / 533 ++ (2.f7.J --- 

L c __ -A_.. FE&Q, _*RIIE.S.PACE_AND...LIME DATA. _ -_.- - -- _--- -. ._ --.. -- - 

READ[5.1001) VI.KJ.NT.N=3.IElT.ISAVE.3ELTAX,~~LTAZ,>E~lAT 
1031 FORMAT(614.IP3Dl3.2J 

h?ITE(6.2001J NI.hJ.~l.NPB.I~T.ISAVE~DELTAX,~~~TA~.~~~TAT 
2031- =ORMAT( lH1 

.._ 

I 
.‘S-UYVARY 3= IY=‘JT -D4TA FOR NON-l T:R4Tl VZ; SDL13~--. 

‘RARRIER DRUGRAM*////’ NI =*,X4.‘. 

f 

YJ =‘rlQ,‘, 
‘* 

NT =‘.14, 
F;=3 =* .14.‘. IOT =‘.14.‘. ISAVC =‘.I*.‘. 3x =*. 

l~nlo.z.-. DZ =.‘r IPDIO.2.‘. DT =* .1’310.2J .~ __._. _ 
:- ---- CiLClliATE OUl\NTITiES &HICH DtPEND..ON .SPACE A~IJ 1 I4c 34TA 

NIMl = NI - I 
NIHE = NT - 2 
C*LCULATE-POWER DF TWO OF NUMBER OF UNIQJE HJ~l~ZJN1~T~G~~~~~OIYTS 
I EEP E-I?& I 

-.-..___ -_ --.- -.-_-. -.. .- 

I 
5 I =I/2 

IF(I.EO.lJ GO TO IO -- .-_ -- -.. _--_--.- 
IEXPZ -=.-IEkP2 + I 

----.----- ----- -._ -- 

GO TO 5 
10 NJMI = NJ - I 

NJH2 = NJ - 2 
MT = IBT 
IET = IBT + NT 
1 a25 .T- 0 -~.. ._. -. _ ___-__---_ - ___-.___ 
NP3HI = NPB - 1 
N”UP1 = NPB + 1 
N.=fJP2 = NPB + 2 
DXY2 .; CELTAX.-t-Z.- - - -----_.. ------ - 
DXSQ = DELTAX l + 2 
DZH2 = DELTA2 * 2. 
DZD2 = DELTAZ / 2. 
DZSQ = DELTAL.+.*_.2----..-.-- --.-._. -._-.__-. -_.-._-_- 
DZD6 = DELTA2 / 6. 
3223x2 = 2. * 3250 f 3xs3 
FAC = -1. / (12. * DELTAX * DCLTAZJ 
FACti2-=-FAC .*..2...- ___--__ __ -__-__._.._._._. _ ..__-...-__. 
FACM4 = FAC * 4. 
FACW43 = FACu4 / 3. 
DELTAT = DELTAT * 2. 

. .-- __.- ___, _..._._ --.-.- 
8. READ, &RITE BARRIC3 D4TA 

READ(5.1002J ~I~3(1J.JU~IJ .1=2,NP3PI) 
1032 Fi)R~AT(20141..---~~-- --.--- -..._--.. -. - .-..--. _ 
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YRITEt6.2002J (11(1)~~B11).1=2.NPBPl) 

C 
2002 FO~UAT11HO.‘CODR~lNATES OF tAR9tER =~.10~2X.*(‘~l2,~,~.12.~J~~~ 

CALCULATE tW4NllTlES &HlCH DEPEND DN BARRIER DA14 
-. __- ~JN:pDA~-18(NPBPl).--~B~L 

= NIM2 + IYB 
-~- 

c CALCULATE TYPE OF FACH GRID POINT 
C4LL PlSPFC(1 TYPE.IB,JB.NImNJ.NPBP2) 

-.- .- JMAXHI -?..JMAL=_I _--_ - -__ ---_. _ _._ _ _ 
NDLJW = 2 + HODtNJ*t tNt*7J/2+1 J+NlH2+3tNI?A~NJM2+~~4~~~‘~~~~~)~ 
DO 1’3 1 = l.NDUW 

15 IDUWtlJ = 0 
g-. -- _.--.-_ ---- ~ .--. ----_.-_-__ __. 

C. READ. uRITE GRAPHICAL OUTPUT DATA 
___ 

; 
READ<S.l003J IS~JS~~N~JN~NJSM~.NPS~LV.NRM~~V,~~T~~V.,~~LV,NWLV. 

--.l .- __. _- _.- ._._ NRlLY~1PSlL;;L_IlrHUGR,IZJAGG.IUGR. huA,ihll&t- 
1003 FORHATtSt4/4t 4.6t /2014JJ 

kRlTEt6.2003J lS~JS~IN~JN.NJSHlwhPSlLV.N~U~L~.~Zl4~V,~ULV.NWLV, 
I NR1LV.1PSIbR.1RiiOGH.lZT4GR. IJG~.Iu;R.I~IGR 

At033 FaRMATIIHD.!tIS .s.*~l4,:~- -.JS.=’ ..,14.‘~. elN.=‘.l4.!~ .-J.Y r*,l4- 
I ‘. NJSYI =‘,I4 I/’ RPSILV =’ .14. l , hRtl3Lv =‘.14. 

J’ 
‘. NZTILV =* .X4,‘, NULV =‘.14.*. NALV =‘.lI. 
.* NR ILV =9,X4//’ IPSIGR =‘.2014//’ lhrlJ;i? =’ .2014/f 

A --1-1ZTA;R-;1~201.4//’ lllr.1 - ?-c201b??rl--1Ird..=-- .‘&nI4/L- 
5 l IR~GR = ‘.2014J 

C CALCULATE OLJ4NTtTtES bHlCH DEPEND ON GRAPHICAL 34T4 
NPStGR = 1 
NRHOGR = 1 - .___.----. _-..-- .-- 
NZlAGR = 1 
NUGR = 1 
NWGR = 1 

_ --NRI GR -=-1.-. --- ___-_ .- -.__ -~-.-. - - _.- 
IE = IS + 1N - 1 
JE = JS + JN - t 
CILCULATE HGRIZEIYTAL EXTENT OF GRID POINTS Ar Ir(tCi b IS TO BE 
CALCuL4TED 
tsw = IS 
tFttS.EO.lJ 1SY = 2 

___ I EM -F-IF---- ------- 
tFttE.EO.NIJ IEY = Ntr(1 
INHI = IN - 1 

c SET UP ANNOT TtllN FO? GHlDHlCAL OUTPUT 
C4LL .GRA.FINtL..tN’-34 LINE3 NJSMJ J ----._ L-9 - . ..I--.. - 
I F( 187.hE.O) GO TO 230 

-- -- - .-- .- - --- 

c’ D. READ WIND VELOCITY DATA. AhrD CALCJLATE UO 
i---- -. __-- -~ 

READI 5.1004J ICASE 
1004 FORMAT(I4J 

G3 TD t60.70.30.90.100.110J .tC4SE r 
._ _SOUh3IrJG.CA.SE (C4LSU~~TEr7HC.P.IPr!AD3tTIOY_IJ_UO~I..~_~ __._.._ ._ 
60 kRlTEI6.2004J 

2504 FORMiTt lH0.mSOUN3tNG DATA CASE’//6X .*lJ*.1lX.‘T’.l1X.*=“/) 
DU 65 J = 1,NJ 

__.__ .__. RC4Dt5..1005Js U0tJJ.T.P - 
1005 FURM4Tt 1P3Dl3.2) 

kRlltl6.20051 UOf JJ.1.P 
2005 FORt.!ATtlX.lPDl0.2.i1+2Dl2.2J 

---;! 0”; .I $;$JJ-.*_w.HDS -.___--. __..- _- -_ 

P = P * r.o;+on 
65 RHOOtJJ = SRTP + P ++ (Z./f.) / T 

- ---G 0 -TP - 1-2 0 __..__ ---- ------~~ 
c CUNST4NT VELOCITY CASE 

70 READiS. 1006) 31 
1006 FJHYATilPDlO..?I 

_ . ..~RI.tEJ6~200.6J-.-Ul-_-..- 
-2006 FURYATtlHO.‘CGN5TANT VELDCITY CASE. Ul =*.1=3lu*E~ 

DO 75 J = l.NJ 
75 JO(J) = Ul 

ee..e...GO -T-J ? 20 -_-.-- ---__ 
c COUSTANT SHC4R CASE 

--..- 

80 RCADt 5, 1007) 111 ,C 
1007 FURqATt IPZDlO.ZJ 

_- ..--._ v!RI TE (G,2007J .Ul KC-.p ,__.___._ -- ..-. ..-- --. --.. .- 
2007 FORY~TtIliO.‘CUUSTANT SHE4R CASE, U1 =‘.lP310.2.‘. c =*, iPDiO.Z-/j 

1 6XI’lJ’/J 
CDZ = C * DELTAZ 

_-. .-. _ DO..BS.J-.‘.J ,AYJ- --.- _ --- 
U3tJJ = VI + C)Z + tJ - 18 

85 ‘%-?ITEtC,?008J UO( JJ 
2JOiJ FOR;.?4TtlX,lPDlO.2) 
.__. GO. TO ..120.-F-p- ___-._.. ._ __. -__-. .-- -.. -. . 
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c E XPDNENT IAL PROF ILE CASE 
90 READ(5.1005J U1.UZ.C 

URITE(6.2009J UlwU2.C 
2009- FJR:4AT( ?I$.,!E*PCNENTIAL P_R.DFILE CASE* VI =m,Am&0r.2,. . _L U 

1 IPDl0.2.*. C =*. lPDlO.2//6X.‘U’/J 
St-= ’ - 

CD2 = C * DELTA2 
DO 95 J = l.NJ 

_____ UOISL=__Ul.~t_YZ-*DEXP[CDLclJ-U) 
95 URllEt6.200f3J UOl JB 

-- 

GO TO 120 
c HYPERBOLIC TANGENTIAL PROFILE CASE 
- 100 QEAD(5.1008~ UI l U2.LI l WB2 

lOOa FORWATt lP2D10.2.214J 
RRlTEf6.20lOJ Ul.U2.Lt.M32 

-2OlOlaR~Ari~HOl~HYPER~ I!- TAN;ENI~N9~lLE..~A~._31il.~P31Q.2,_. 
1 '* u2 =‘. lP310.2.‘. LI =*. 14. l . YJZ =‘.14//oX.‘U’/J 

LXl~~' J = l.NJ 
= Ul + U2 * DTANH( ~FLOATI (J-LIJ/HDZJJ 

.-IQ5 W$‘;E$~;~O.OBL”‘J~ -- -._- 

t OTHER VELOCITY CASE 
110 URITE(6~2011J 

m-2011 IDRHATAllHO~~f’ECIFlF-, VFI OfITY CASF’//6X..d’/) - 
UEAD(5.10091 (UO( JJ.J=l.‘dJl 

1009 =OR.qAT(lP8010.2J 
00 115 J = I.NJ 

-_IIS.BRJTE~~~~O~RIUDD 
c 

z E. CALCULATE PSI0 
C 

..-JLO ,=‘;I:&%= 0. 
= 2.NJ 

125 PSIO(JJ = PSiOCJ-1, - DZDL * (UOtJ-11 + UOiJ)J 
IF( ICASE.EO.1 J GO TO 170 

A--- -___-_~ 
c F. READ. WRITE STABILITY DATA, AND CALCULATE STAdI-ITY _I--- 
z 

READ( 5.1004J JCASE 
____ LO.Tu.1~.3~.14D~~s.(LW~~= -- 
c CONSTANT LAPSE RATE CASE 

130 ~EA3(5,10071 GAMYAeTO 
PHITE(h.2012) GAMvA.T3 

-2912 lfClRMAT( lHO.‘(IC~.STANT LAPS: RATE CASE, C-4 .WM & s.. I? J 13 .-z ._’ .-T-0. .=_’ 5 
1 lnD10.2) 
-D%VTO = (DALR - CAMYAJ / TO 

33 135 J = l.NJ 
,_ j-35 S(J) .=-D:4CD_TO ~-__.----___.- 

ti0 TO 160 
c CDOVSTA’dT SRUNT-VAISALA FREOUEtUCY CASE 

140 l?EAO(IJ, 1006) HV 
. kRllti(6r2013~.BV 

2013 =i)r?HAT( lHO.‘CONSlANT BRUYT-VAISALA fREQUENCY CAS?.-%V =*;i@i:,-.2re 
SEV = t3v ** 2 / G 
30 145 J = 1;NJ - 

---1.4 5 ..S l J J r>f%V 
GO TO 160 
CONSTANT RIChAROSCN Nil’dElER CASE 

- 150 READ(5, 1006) CR1 
-~.W9ITE~6,201!t~CRI --- -- 
2014 FJRMAT( lHO.‘CONSTAkT RIC-IARDSON NUMEIER CASE. RI =* .11’010.2~ 

RIDZSC = CR1 / (0253 + GJ 
S(l) = RIDZSG * (UO(2J - UO(lJJ +* 2 

..-.DU -155-J-=_2&J!~ 
155 s(J) = RIVZSG * tUOtJ+I) - UO(J-1 JJ t* 2 / 4. 

S(NJJ = RIDZSG l (UOtNJJ - UO(NJ!.llJ) *+ 2 

.k __.__ ‘ . ..- CALCULATFHM -~- 
c 

160 RH30t 1) = SRHO 
DO 165-J = 2.NJ 

165 RHOO( JJ = RHCO(J-I) l D~X3(-3Z32~(S(J-l)tS(JJ~J 

i 
INITIALIZE VORTICITY. AVSU-AH Aa;U;.lENlS, E4T;IIX >ln.iJuAL 
ELE.vENTS. AN> FOIJRIEq ThAhSFU.?Y PSI = 0 CN T3P 3JJYJAdY FOR 
CALCVLAT~~N-~~~-EARR~~-I.~FLUE~~E. COEFFICIENTS _______.__-.._ -_- ..-. 

---17-i DO 175 I = l.NI 
JO 17s J = l.NJ 

175 ZETA{ I.JJ = 0. 
-.--PIN2 .=~6.2&31~53QZ-183,09.~~_._. _-__.-._._~ _ _..-.-_---_ 

DO 190 I = l.NIH2 
;W,= "4;" * (I - 1) / NIM2 

+ DZ2DX2 4 11 - DCDS( ARGI ) 1 
. AK<1 J.: 3SI?i(ARGLJJ- JzL;AX.-- __.. -__. - ..^. -. .- ^ . _. -. .-..- 
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DO 180 J = I*2 
180 PSIBFT(IoJ# = 0. 

C 3kFlYE SPLINE JdATRIX DIASONAL ELEMENTS 
--_ -.rSll J-=-2r- ---~--- - _-_ 

DO 182 J = 2aNJMl 
1.92 AS(J) = 4. 

AS<NJJ = 2. 
=-- _.-- -.--~__ ---- -_------ -. - _ .__ __ 

z 
Ii. SOLVC POISSON EQUATION CiITlr UfulI VCiRTlCITf >ljTJaBANCE AT EACH 

; 
VERTICAL LEVEL F3R Y-IlCd THERE IS 4 DOINT UN TrlE SJti’4CE OF THE 

z 
BARRIER. AND STCRE RESJLlS INTO PSlAUX 

L- --- .-. __-~ ~_.__. 
DO 190 K = 1. JMAXMl 
ZETA{ IB(NPBP1 ).K+lJ = 1. 
CALL FA(PSl.ZETA.FTR.= T~.PS~DFT.~O.UA~.U~~.LJA~.~~~.U~~.N~.NJ.N~M~. 

-. . 1 .- ----hJW>- ~.- 
ZETA(IR(NPJP1 J.K+lJ = 0. 
D3 187 J = l.NJM2 
00 Id5 I = l.NlY2 

---185 PSlA?1XLLJdCL~.2S.lL&kkl- -_- - -- _--._ 
DO 187 L = 1. IYB 

187 PSIAUX<NlWE+L.J.KJ = PS1AUXfL.J.K) 
03 189 J = l.NpB 

---IFt.JR(J?l J=NbwK3ll_GQ TO 189 --.__------__ -__- 
L = lB[NPBPl) - lB(J+lJ 
30 IBe I = l.NPB 
PSIM(l.JJ = DSlt lB( l+lJ+-.Jtl(l+l)J 

16.3 .JHfI, JJ -=-PSI.Y(LY___~.- 
189 CONTINUE 
190 CONTINUE 

z CALCULATE DETERMINANT OF ALPHA MATRIX 
_.- .-CALL GEA IM,DELN~~N=~I.~1~---- -~ 

C 
1. CALCULITE BET4 

-.. DD 205 I..=-l.aNPB.-_- __._ - 
60 205 j = lsNP9 
CFAC = t-1) ** tI+JJ / DET 

c SELECT COFACTOR MATRIX E,EMENTS 
..-...I4 _= .D.-----.-------- -__ ___..- - -. .--.-- -- _ _ 

DO 200 K = l.NPB 
lF(I .EQ.K) GO TO 200 
y=cI+1 

195 
200 

-. - _. 

205 
c 

20.6 

N r .D---- --~__ -- 
00 195 L = l.WR 
1FtJ.EO.L) GO TO 195 
N=N+l 
TY(M.NJ = PSIW(KsLb 
C@NTINLJE 
C ONT i NUE 

_C_nLCULaTE_~F.TERMI.)r‘l\Nt~F CDFACTOtLMATRIX~- - 
CALL GE(TY.CF3ET.hPO,h'Rdl.l4CC2J 
3ETAtJ.I) = CFAC * CFOET * 10. +Z ((IACCE-lACClJ+SOJ 
CALCUL4TE FOURlFR 7W4NS=O?M OF PSI ON TW’ BOJNdA3Y 
.DO -209 .I ..?eldlM2 - _ ---._ 
PSldFT( 1 .l J = PSlO(NJJ 
CALL FASl~PSISFT(l.1~.PSIBFT~l.2).NIM2.IEXP2,1J 

i 
00 210 I = l.NI 
03 210 J = l.NJ 

. ..2lO.‘SI( 1.J) ?-?SIOIJ L_- _ _-___-- .__~_----_- .--- 
C SUPERPOSITION SOLUTION FO? PSI FOF TlslE STE= 0 

CALL S~~~Sl.PSIA~X.ITYPE.~fTA,IB.JB.SPS~.N~.~J,~~~~~~J~2,NlPA, 
1 JMAXYI ,NPU,N=BP2J 

-._ .- DO .2? 5 .J .,._ ?.._1_dl -.-~ ___..- 
31) 215 J = l,NJ 
DJ 214 K = 2.Nl 

214 IF~39ES~PSI~I,JJ~.LE.DA5S~=SlOfKJ~J GO TO 
_. 215. kH.3( 1 ,J).=-(I’ SIt.1 rJJ L PjI5[k-1-J). 4. (F;hCO 

1 (DSl3tKJ - PSIO(K-1 JJ + P-IOO(r( 
C CALCULATE ZETA FRCM PSI0 

DJ 2'0 J = 2,NJMl 
230 ZETA1 lrJ)~=_.(PS13.~Jrl~~~SJQ.~J+JL~-2.._~ 

ZET4( 1.1 J = LETAt I.21 
ZETA( I.NJJ = ZETA{ 1 .NJMlJ 
Dil 225 J = 1, NJ 

. 00 225 I .=-?_. Nl 
225 ZETAt.1:iI1 = ZET4( l.JJp------ 

--__- 

f ZERO GUT VOFTICITY I\SlDE EAl.klER 
DO 227 1 = lSb.lEB 

. ..3.0..2.~7-. J._‘.1,-J~.A.~.fl 

../: -. 
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227 IFlITVPElI.JJ.EQ.9J 2ETAlI.J) = 0. 
GO TO 235 

$--H-K- READ.. PSI.r.HO.~IE.L4J_-~O-~~~.~~~ETA~ .-1JmY~.~-.rr~..-4ND. PSIEf3-m 
FROM TAPE OR DXSK . 

L 
230 READ(I) PSI.4HO.ZETA,RHDO.PSlAUX~bETA.ll~PE.4D..=SI~FT. 

I (tDUlf.E.)_, l=I .rz’JJ\IJ --._ _ - .-. _.. 
235 IF1 IB25.ED.IJ GO TO 280 

--. -.-_ 

c 
f L. CALCULATE GRAPHICAL OUTPUT FOR TIME STW UT 
c * .__- - .-_. - -----..-- ------ ---_---- 

IFlMT.NE.IPSIGR(~PSIGRJJ GD TJ 240 
CALL GRAFICJRSI .4.LINE34.LINE3.I.NPSILV.NI.N~.NJ~Ml J 
N=‘SIGR = NPSIGR + 1 

_. 24O_.IFlHT .NEIIRH~GRIY~~.DGR) J-tOd_o 245 _.__ 
CALL GRAFIC~~I~D.A.LIN~34,LINE3.2.~R~OLV.~~I.NJ.~J~~JJ 
NRH03R = NRH3CR + I 

245 IF(M7 .NF.TZTAGRlYZTAGRJ J GO TG 250 

250 IF(WT.NE.IUGHlNUGRJJ GO TO 255 
CALL CALCU(PSI.ZEfA.U,AS.UAl.U42~lJA3.UAb.NI.NJJ 
;;s4k GRAFIClU.A.LlNE34,LINE3.4.NULV.NI.NJ.NJ~MJJ 

= NUGR + 1 
255 IF(HT.NE.IYGR(Nk’GRJJ GC’ TO 260 

_. -. CALL C~LC~LPSI,~,FI~EZJ~KJ~~I~.-~-~_- 
CALL GRAFIC~Y.A.LJNf34.LIN~3.5,N~LV.NI.NJ.NJSMlJ 
N*‘GR = NYGR + I 

260 IF(MT.NF.IRIGAlNHIGRJJ GO TO 265 
--. _ _ =4LL CALCRI~PS~.~HO~ZtTA.Rl,AS~V43rJ4~~J4~~~4~~Nl,~JJ __ 

CALL GRAFIC(RI.A.LINt34.LJNE3.6.NFJLV.Nl.NJ,~JSMJJ 
NRIGR = NRIGR + I 

_ 265 IFlMT.LT.IETJ GD TO 270 
-- --- .-- --____ ___~- 

; 
H. WHITE PSI. RH3. ZETA. RtlDO. PSI4UX. BETA, ITr?L. AU. AND PSIBFT 
ONTO TAPE OR DIS< 

-~__~_.LF~ISAYE.EO~I-RITELU._USIIR~~,LETA,H~M),PS,AJ~~~-T~,~T~.PEJ~~L. _ 
I ‘SIRFT.~IDUF!JIJ.I=I~NDJ~~J 

STOP 
270 IF(MDD(MT.25J .NE.OJ GU TO 2.30 

.- _ _.DECTA? ..fDEL.L&T-.LS,--- 
b 
z N. SET OLDRtiD = RHO. ULDZTA = ZETA 
c 

.- DU -275 Ien i?.NI’L.--e-e -___-.-- _-_----_.. _.- 
DO 275 J = l.NJ 
OLDRH61 i.JJ-= RHO(1 .JJ 

275 GLDZTA(I.JJ = 2ETAtI.J) 
c a..- - ~-.-- 

- C 0. CALCULATE J4COBlANS J(ZfTA.PSI Jo J(RHO.PSI J 
r 

_ - 290 DO 345 I = 2eNIHI 
--03-..340e_Jti1r_NC- 

K = ITYPE(1.J) 
c NEWdHO FOR PDINT TYPES 1 THROUGH 9 

YE!x~HO(I.JJ = UL3RtlO(I.JJ 
_ IF(K.NE..DL-GD.-T-~-295--- 

-JACOHIAh% F@R POINT TYPE 0 
Al = PSITI-I.J+JJ 
A2 = PSIlI.J+JJ 

-- -_--___ 

----- 

-..-- 113-s.-PSI (X+1, J& - -____--- 
A4 = PSI(I-l.JJ 
A6 = PSI(Itl.JJ 
A7 = PSIII-l.J-lJ 

___ -48. ..=_. PSI .( I. J=l.J.- 
A9 = PST(J+I.J-IJ 

_______. 

81 = A8 + A9 - A2 - A3 
B2 = - A7 - 43 + Al + 42 

_ __ B 3m =.-AC ‘-“34.;-%;-; l-A4 ~. 
04 = - A9 - 
R5 = A6 - A2 
36 = - A8 + A4 

_--. - e8’-=-.~2.n;-$~ ____.--_.--__ ..--. -.- 
B9 = 
AJZP = FAC * ‘I;31 * ZETA(It1.J) + 82 + ZETA(I-1.J) + 33 + 

1 ZET4(!.J+JJ + 34 * ZkTA(I,J-JJ + DS I Lzl~~Itl,JtlJ + B6 * 
--.- . 2 ________ ZF.TA~I.~l.J~1J.~t~E7.~*..Z~TA~.I~l.Jt1J t. 38 i ikT4i I+I,JzlJJ.-.. 

DGHO = (l?tlO( I +I . J J - RHD(I-1 .JJJ / 2. 
C CALCULATE NE’XPVO FCJH ?JlYT TYPE 0 

NEWRtiO<I.JJ = FAC C 101 t RHDlI+I.JJ t 82 t qHJ(J-l.JJ + A3 * 
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1 RH3(IsJ+lJ + 84 l RHO(I.J-1) t t)ki C ~d3LI+l,Jtl) + 
86 * RHC(I-ImJ-I1 + B7 + RHOi&-I.JtIJ + B8 t 
RH3(1+1.J-IJJ + DELTAT + oLDc(r(U(l.JJ 

_--._ GO..JmO 3.35 -___ -__ _ _.-- _- 
C JACCIOIAN FOR POINT TYPE 1 

285 IF’K.,“M; 4: TO 290 
A5 = 

A- -A r-7. PS1.i LLJ-A. -- -- - -..--_.. _ __._ 
A.5 = PSIfI.J-IJ 
A9 = PSI(Itl.J-1) 
4JZP = FACH2 l (ZFTA(It1 .JJ * (A8 t A9 - 2. * ASJ t ZkTA(I--I-J) * 

--. ‘2 ._____ 1sA7~~~S_,.2J.1-ASJ.,.IETAII.J-lJ._l~--A9-+ AAl) f _____.__ 
(LET A( I-L. J-I J - ZETA(I+l.J-11) l (- 48 + AziJJ 

3RHO = 0. 
CD TO 335 

L. JACOOIAN.FOR.~OUUJIPI.~ 
290. lF(K.NE.2) GO TO 295 

Al = PSI(I-l.J+lJ 
PSI(I.J+lJ 

AJZP = t4CY2 * (ZETA(It1.J) L <- A2 - A31 + ZkTA(l-l.JJ 4 
(Al t A21 + ZETA(IrJ+l) l (A3 - All t A2 + IZEiA(I-l.J+lJ - 
ZETA(I+I.J+IJ#J 

___- DRHrt = 01 --..----- 
GO TO 335 

295 KM2 = K - 2 
GO TO (300.305.310.315.320.325~3301.KM2 

z J4COBl4N FOR_P.OINUYPF 
30bAl 

--- -... -- . .._ -_ 
= PSI(I--I.J+lJ 

A4 = PSl(f-l.JJ 
A7 = PSI(I--I.J-1) 

_ .AJZP_ ~..ACMZ.~*_lLETALlr~..JJ_+_I~._AZ_+_ Al)-+ LLl411aJ+L>.Z -- _ ~_ 
1 (- A4 - AI J + ZETAi I,J--1 J * (A7 t A4J + AU * 
2 (ZETA( 1-l. J-l 1 - ZETA(I-l.J+IJ J 1 

~;H~o’z;;O”, J) - RHO( I-l.JJ 
__..- ~-- __--- - .--- 

c JACODIAN FOR POINT TY=‘E 4 
305 A3 = PSI(t+l.J+lJ 

i: 
PSI(I+l.JJ 

.-_-- :.-PSI f X.+1. J-11----..---- ._.-. __. .- -- ._ -.--. --. 
AJZP = FACN2 t (ZETAlI+l.J) * (A0 - A3) + ZETA[i.J+IJ * (A6 + A31 

+ ZETA(I,J-1) * (- AY - A6J + A6 * lLi1Aii+L .l+lJ - 
LETAt I tl, J-1 J) J 

- - .DRHO-= .RtiOLLtIs-II~IaJJ --- ---_~ -_-. -. - 
GO TD 335 

C JACOSIAN FOR POINT TY?E 5 
310 4JZP = FACY4 I PsI(I-l.J+lJ * (ZETA(I-1-J) - ZEr4(1.J+lJJ 
--.-.3RtiO-co*--- -- _. _..___. -- __ -- 

GO TO 335 c JACOdIAN FOR POINT TYPE 6 
- 315 AJZP = FACN4 t PS11l+I,JtlJ * (ZETA(I.J+l) - L~TALl+l.J)J 

_.-..-. _ 3 RHO-= -0 I __- -- -- 
GO TO 335 

c JACOBIAN FOR POIYT TYPE 7 
320 Al = PSI(I-l.J+IJ 

---._ A7-.PSlII,J+IJ -___ .--. -_-- 
A3 = PSI(Itl.J+lJ 
A4 = PSI(I-1-J) 
A7 = PSIfI-:.J-1) 
AJZP = FACtA * (ZETA(It1.J) t I- A2 - A3J t ~cT4(1-l.JJ 4 

I (- A7 + Al t A2J + iETA(I.J+lJ * iA3 - A4 - AlJ + 

-:--- 
ZETA(I.J-IJ + (A7 t A4J + A2 4 (ZETA(I-l.JtIJ - 
ZETA(.I.+~.I.J.~UJ_+_..$~~<~EL~~~~.J~=~J-~-Z~T~I I-1, J+lJJj ____ 

DRHO = (MHO(ItI.JJ - RdO(I-leJ1) / 2. 
GO TO 335 
JACOBIAN FOR “OINT TYPE B 

A2 = PSl(l.JtlJ 
- ---.___-. ._ ____ _. _ 

A3 = isriiii.jii) 
A6 = PSI(It1.J) 

_ A9 =.-PSI [.1+1,.J~_lL.----we-.- _-__._..__.-_.__-- _ __. .- -__ . 
4JZP = fACM43 * (LETA(ltl,JJ + (A9 - A2 - AJJ t LCr4(I-lmJ1 4 

I (Al t AZ) + ZETA(I,J+I) * (A6 + A3 - .i11 t iETn(l.J-lJ l 
(- AC; - A61 t A5 * [LETA(l+l.J+lJ - Z:TA(ltl.J-1JJ + 42 4 

-_. -:..F __(ZET~~.I--IJJ_*_~~._.~-_.ZE.TA(I 61 s J+.l_) 1.) _-_.... -_. __-- _-_ _-_ __ 
~~H~O=3~~tiO(I+l~JJ - ,?tiGil-l,JJJ/ 2. 

c NEWZ rl FO4 POI’JT TYP2 9 
IO-NEFZTA_(-l.esJJ = OLDZLLII I rJJ -~_.- _.-------- -._ _ ..---.--. 

GO TO 340 
: CALCULATE NEWZTA FUR PuINT TYPES 0 THRCtUGH fl 

335 NEWZTAll .JJ = IAJZP - (5 I DHh3J / (3CLT4X C ti:,IJ.lIJJ)j * 3ELTAT 
-._ .--~___+_OVZLAL.LJ1--.---- .-__- - ____. _._._ .- -- - - 
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340 CONTINUE 
3b5 CCNT I NUE 

IF(UOD(Mt.25J.EO.O~ GO TO 355 
+--P;-%tiy-mZTA ___- -- -.- 

= ZETA. OLDRHO = RHO 
z 

DO 350 I = 2.NIMl 
mm.--D.G- .J_?=-L,_hJ- 350. ---- --- --.-. 

DLDZtAI f.JJ = ZETA,(I.JJ- 
350 GLDRt+O(I.Jl = RHOtI.JJ 

GJ TO 365 
355. DELTA? 5 DSLT.-4T-)2. - -.-. .-.-. 

IF1 lDZS.ED.lJ GO TO 360 
lB2S = I 
#T = MT - 1 

- -- 
366 

30 ID-365 
I825 = 0 

5 0. SET ZETA = NEYZTA. RHO = NEURHO 
.i------ ___.~_ 

365 JO 370 I = ?,NIMI 
DO 370 J = I.NJ 
ZETA( I.JJ = NEUZTA(1.J) 

-J,ZO-~~u0(1,~.~=~~_~HHilU~~I 
DO 375 J = I.NJ 
2ETAtI.J) = ZETA(hlMl.JJ 
ZETA(N1.J) = ZETA(2rJJ 
HHOtI .JJ = RIiD(N~l-.JJ 

---3F5 n~o(~4lL.ii~~Xiid7r.J~ --- 
c 
c R. CALCUL4TE PSl FOR NEXT TIME STEP 

-E-.-.- -.--.- -_----.__- 
SOLVE PCISSON EOUATIUN FDR PSI 
CALL FA~PSI.ZETA,FTR.FtI,PS~BFT.AD.U4l.UA2.~~3.J44.~4S.Nl.NJ.Nl~2. 

1 hJH2 1 
c SUPERPDSITION SOLUtIOh F3R PSI AT TIME STEP MT 

CALL SP(PSI.F’SIAUX.ITYPE. BElA~IB~JR.SPSI.NI..~J.rlI~Z.YJM7.NIPA. 
I JMAXYI .NPB.N=BPZJ 

-.-..Hf...R-MT-t 1 - --____--- 
GU TO 235 

(PSI.Ri~,ZET4,RI.AD.UP.R.Z,~.~2~Sl .>tiHO.NI .NJ) L 
- _. -. -_--._--. - -._ -_ -.-._ 
C JAI5 ROUTINE -~Al.rUL4TfS 1HE RICHA~RDSCY NJH,jEd Flt~3 -d-I-- -- ------ - - 
K 

IYPL ICIT REAL*H(A-H,O-ZJ 
..__ 3E4L+5 P~I~NI,NJ~~C1~3~~l,NJJ,ZCTA~hlI,NJ~,~I~~I,Y~J,J.=[NJ)_, ____ __ 

1 AD(:~J).~(~J),~~NJ),~(NJ),~ZPSl(NJ~.~~i~(~JJ 
COHMON/Cl/DELT4X~OX~~~~~LlAi~D~M~~~~S~~DZD6~G~~~l4L~.~J~~~~EX~2~ 

I IS.JS.IE.JE.I5~.lEW.NP~Pl.JMAX~I~B.A~~ 
c-- __..-- - ____--___ .- --___- _- 

s 
A. CALCULATE SECJN3 DCHIVATIVE OF PSI 

UP(l) = AD(l) 
-WeLJ-.E-Q, 

DO 10 I = IS.lE 
C ROUN3ARY CUN9ITIOI\S DY SECON3 DEGIVATIVE OF =S1 

DZPSI (I J = ZETA{1 .I) 
__ eD2PS.I (YJJ = .Zt_T_/?1.1>N.J) 

013 = DZPSI(l) * 3706 
3T = DZPSItNJJ * OZD6 

c CALCULATE 8 ‘4ATRlX E-EHENtS 
~~+A. :..2rNJ--p -___--- 

= (PSI(IIJJ - PSl(IvJ-IJJ / DELTAZ 
1 y;lJ = 3. * (3(J) + D(J-1)) 

= BIIJ - 3. * 08 
t3(NJ)-.=..3*..?-.(3(N.J)+DT)- 

=-~THiDlAGONAL SPLIVE H4l;IIX I~iiii?-S~ii~% FJR =Ir(jT DEPIVATIVE OF c 
Z PSr 

zii) = B(I) 
_-_~.--. 30. 2. J ..=.Z*NJ 

JL = -1. / UP(J-I 1 
U’(J) = AD(J) + UL 

--__--- 

2 Z(J) = S(J) + UL t Z(J-1) 
_ --- _ DPSIl =..Z(NJ) J-UPfNJ.J-. -___--_- .._._ - ______. 
c CALCULATE SECOND DERIVATIVE OF PSI FROM FIRST 3:druAf1-V-g -OF PSI 

00 3 J = 2,NJHl 
K=‘JJ-J+ 1 

- -..-. ..3=SI2 = (Z(K)..-DPSIl J-/_V?(KL~.--~ .- ___.. - .__ ._. 
JZPSI(KJ = (-4. * 3PS12 t t.. + D(K+lJ - 2. C D=SIlJ / DELTA,? 

3 >PSIl = DPSIE 
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A-_ 
4 

-’ 

---_ 

5 

-- _ ..- 
6 

C 

00 4 J = 2.NJ 
3(J) = iRHOtleJ1 - RiOtI.J-1)) / DELT42 

.f ALCJL~IE_BY*TRUL!~ENTS 
alJ-1, = 3. l (r)(J) + D(J-1)) 
BtNJl = 3. * DtNJ) 
TRIO1 AGONAL SPLINE MATRIX INVEPSIOF~ SCHEME 

~~‘~-=s”“.J 
= 2.NJ 

---- 

UL = -1, / U=‘(J-11 
;‘;:;J = AD[J;i tii 

= B(J) + UL + ZCJ-i, 
DHHO(NJ) = ZtNJ) / U’tNJJ 
OD 6 J = 2.NJ 

K = NJ..z.J_*I -_._ ~ 
DRHO(K) = (ZtK1 - DFitiJ(K+lJ) / UP(K) 

--...- 

___- 

z C. C4LCULATE RI FROM 3RH3. DZPSI 
L-- __ .-_--_ ----~.-.--~___-_ 

00 9 J = JS.JE 
lFt32PSItJ).EO.O.~ GO 10 8 
R=- G * DRHO~J) 1 cR~0t 1.~1 * 42~51 t J)*+~J 

----1F(R.GTaa25- 
R = .25 
GO TO 9 

7 tFtR.LT.9.99) GO TO 3 
-..-E-G!.=-9.99 .__-__- -- ..- -_-_.- .-- 

9 2ItI.J) = DL3GlOtQ) 
to CONTINUE 

RETURN 
- END -- -. .- .-_- - --_ 

(SU3RJUT I+ CAL@-PSt.ZETA.J.AD.UP.B.Z.O.Nt.MJJ 
-.-._.-.-- 

r IHIS ROUTtNE CILCLLATES THE hC?IZONTAL VELUClTr =[:-I J U 
r. .---~~ - _--_.- __--.- __._ --.----- .-.- -._. . .- - - 

IN=LICIT RE4L*B(A-H,O-2) 
REAL*8 PSttNl.VJJ.ZEt4~NI.~J~.UtNI.NJ).UPtNJJ.A~tNJ~.6tNJ~.Z~NJ~, 

1 D(NJ) 
-. _-- ~OM~~N/L~~D~T~,DX~VJ~~TAL~DZ~,DL~O.DZD~.~.N~ Ua NJ.41 l 1!33?2.. -- 

1 IS.JS.tE~Jf.IS#.tEY,~P~Pl,J~AX.lS~~l~~ 
UP(I) = ACOJ 
DtlJ = 0. 
DO 3 1 = IS,1E .-__ - -... _. ..-. - -..- .- 

z aOUNJARY CONnITIOhS ON SECLND DERIVATIVE OF SSA 
D3 = LETAtI.1) * OZ36 
DT = ZETA(I,NJ) * 3ZD6 

.c - ..C4LCULATE..Fl ?!4T_RI.X_ .ELEWNLL--- __.. __--- .-. .-.- --- 
00 1 J = 2,NJ 
D(J) = tPSttI.Jl - PSttt.J-1)) / OELTAZ 

1 B(J-IJ = 3. f (D(J) + DtJ-IJJ 
-__ - B11).-~8t1)_--3.--.*-D3- _____ ---_ -_-.-___ .__- ..__ -- . 

DtNJl = 3. 4 (DtNJ) + DT) 
c TQIDIAGPNAL SI’LINC MATRIX tNVtRSIlJN SCHEslE FUR J 

f(l) = E(1) 
-- .DU. 2 A.-=. 2. NJ- -__ 

UL = -1. / U=fJ-1) 
JPtJ) = A’)(J) + UL 

2 Z(J) = B(J) + UL + Z(J-1) 

- -- -__- _-_- 

_. _-.. Ut t.NJ)-= .-1tf~JI-/-UP1NJJ~ ~ .-__-___. . ..-__ .-_.__ _ _ 
03 3 J = 2.NJ 
K = NJ - J + 1 

3 J1t.K) = - (Z(K) + U(I.<+l)) / Up(K) 
RETJRN -- _ .___ _-- .-. - ..- --_ . --..._.. 
EN? 

C 
fiU3RUUTIhF. C4LC\;J!PStr~~~FTH~FTl~AK~Nl~NJ~NIM2J 

C--..- .THtS ROUTINE C4LCULATCS rtitI VERTICAL VELOCITY FL-. > LL _. _ .._..___ - 
t 

IM+‘LtCIT REAL89tA--H,3-L) 
REAL*e PSttNI .NJt .~tNt.hJ).FTKtNt:~2t.FTttNI~~J.4<~~1~2) 
CC’.lMON/Cl/DELT4X, ~XM~,JELTA~.DZMZ .DZSC.DZDdrL;.a~l .iL.m~JYI .tEXPZ. 

1 tS.JS.IE.JE.IS~v.IL~.~P~Pl.J~~AX. 153, I&d 
C CALCULATE FOUQtER TRA~JSFLRM Ut PSI 

- -. _ DO.3 .J =.JS,J= . --.. - -.- .--. ---. 
OJ 1 I = l.NIN2 
FtQt t J = PSlt I,JJ 

1 FTttI) = 0. 
_~ ._._ CALL F.ASTt.F~~..~T.l~~I’~?,tCKP2 *.-1-J ..____ ----. -.-. ._. .._. __ _ _ 

C C4LC’ULATE FCl’JG!IER CO:FFlCIEkTS Or b 
DO 2 I = l,NlNZ 
1 = FTRtI) 
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2 FTI(Il = AK(I) l T 
z CALCULATE W 3Y T4KIN; INVERSE TRANSFORU 

CALL FASTIFTR.FTI .NIM2.IEXP2.11 
WINIUJ -~ . JL-=-.F_TR(l_) --~ 
YINIeJI = FTRI21 
DO 3 I = IS.NIM2 

3 WIIsJl = FTR(II 
RETWN--- ---.- -._----- - ---_._ _- 
END 

rSJ3R3UTINE F ~PSI,ZETA.F~R.FTI.PSIBFT.AD.BK.3l.~~,Zl,JP.~~I.NJ. 

-i--. IS ROUTINF SOLVFS THE POTSSSY EOUATION FUR Trl- ST4 ‘4YF JNCTIU 

E 
Gl_hri A FlJiJRlEH TRAN5kr;RH IN X, q4,7CHlhG SULJI IjU AN L lFCH?rloJF 

1 NIYZrNJM21 
.___ IMPLICIT .REAL*914rH,O?Z).- 

REAL48 PSllNI ,NJI .ZETAtYi rhJ1 .FTRlNI.NJ1.FTIlNl.NJ~. 
I PSIBfT(NIM2.2l.AD(NI.~2I.flK~NJ~.BI~NJI.Z~~ ~J~,LIINJI,UPINJ~ 

COYMON/CI/DELTAX.DX.*l2.DELTAZVDZYT .DZSa.DZv6.i.~~l4l,NJ141. IEXR,?. 

t7 
-1. IS~J.S~IE,JE.,.ISIJI~W,N~BP~~J~AX~I~~~A~~~ ._--___ -- -__.. _~_. 

CALCULATE FOJRlEH TRANSFURH OF ZETA 
DO 2 J = 2,NJMl 
DO 1 I = I.NIM2 
FTRI I tJ1 = ZE-TAI I .JJ _ --- .__ -- 

1 FT1II.J) = 0. 
2 CALL FASTIFTH~l,J~.F~I~l.J~.NlM2.IEX~2.lI 

c C4LCULAT.E 0 M4TRI X ELEMENTS 
-_ -. JO 5 J -F.. 1. WLMZ ___ __- -- -_---.----. -.---. 

30 3 J = l.NJY2 
HRfJl = - OZSQ l FTR(I.J+I) 

3 RI(J) = - DZSO * FTItI.J+Il 
__-. BH(NJYZ).F_B~_INJ~Z)_~~S[HFTU~J)_ .- - _ ___.. -- - -. ..-- -.- 

31(NJM2) = Bl(NJ47) + PSldFT(I.2) 

E 
C4LCULAlE FOURIER COEFFICIENT5 OF PSI BY Tt?IJlAciJ,ur\~ MATRIX 
I NVEdSIOhr SCHEME 

_-.- - LJPIII-=-ADflJ - -- -~ --...- -_--. -.. 
ZR(1) = Bti(ll 
LItI = BI(ll 
DO 4 J = 2.NJMZ 

_. -_.. UL .E-~13. /_U?LJ:I) ~-.__.----- -.- _ - 
U>(J) = A3tIl + UL 
Zq(J) = BR(Jl - UL t ZR(J-1) 

4 ZIIJI = Bt(J) - UL * ZI(J-11 
._ -.FTd( I !NJMl ).z_Z_RT hJM2),I_dP.(NJ42_)- --~ - 

FTI( I .NJWI) = ZI (hJH2) / UP(hrJM2) 
30 5 J = 2.NJM2 
K = NJY2 - J + 1 
FTR(I.K+l) = (ZR(K) + FTI(I.Kt2)) / UP(K) 

5 FTI(I.Y+I) = (ZI(K) t FTI(XVK+2)) / UP(K) 
z CALCUL4TE PSI BV TAKlhG INVEHSE TR4NSFCRH 

.-.-DO-h J.= 2aNJYL--. - -.--__-_-~__.-, _-- 
6 C4LL FAST(FTR(l.JI.FTi(I.J~.NlM2,IEXP2,-ll 

RETJRN 
END 

--- 

s 

ISU-lhJUTINE F4S&$,Y,N,&IblV) --___ .--- - __. - 

m ROUTINE CNLCUL4TES THE F&ST FflUt’lER TI(4Y5FjlM 0 = T”t= CO\,S, Fx 
c 

g-- 
4RK4V (X,V) IN =‘L4CE. r;tib-RE TlmE I fNG1 H n- X it*, r ,.i A P j*rl= 5 9 r) 
TWO- ~___- --- ----.--_- .-_.- 

IM”LIC17 REAL*BIA-H.3-Zl 
REAL*6 X(N).Y(N) 

-- - -.-. I YAX. = -N~e----e--m-~ - ..------. - .- 
PI42 = 6.283lBS3071BD+OO 
vo 2 L = 1.M 
JDELT = IM4X 

- . ..1’-!4X-E.JHAC.!-~-.-- -___-..-~.. _--__ -- 
FJ = JDELT 
427G = INV * PIME / FJ 
C = DCOS(ARG) 

- .-- .- Se=. .DSI.N(ARGl.- .---_--_-___.- _.._._... ..- __.____ -. _ .._ 
u = I. 
v = 0. 
DO 2 I = l.IMAX 

--...30..1-J c-1 J.N~ .JC!Eti.-..-.p-.- _.._.. 
K = J + IMAX 
XJ = X(J) + X(K) 
VJ = V(J) t Y(K) 

._- .XK m:.. Xl Jl-z..XJKI--A.---. ___- ._-_----_--_ -_--.. .- .- .-_ 
VK = Y(J) - Y(K) 
X(K) = u l XK - v l VK 
V(K) = U * YK + V * XK 

.- --.?. L.)-=. .K..-~----.------. -__-- - - . ---.-- -.--- -_- -.- ---- .--. 
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-1 Y(J) = YJ 
T=C*lJ-ssv 
v=C*V+SLlJ 

= ---____-.- .____ _. _ 
J=l 
NT = N/2 
1 UAX = N - 1 

3osJ~.=_J,lLIAx I_--___ 
lF(1.GE.J) GL) TO 3 
T = X(J) 
X(J) = X(I) 

--. X(1U-= T __-- -----__ _..-..-- _-- - 
T = Y(J) 
Y(J) = Y(C) 
Y(l) = T 

-~-K--E-NT -.--- __ - -.---- _ .__-- 
4 1FLK.GE.J) GO TO 5 

J=J-K 
K=K/2 

---do TO 4 __-.__-.--..- 
=J+K 

lF( INV.EO.1 1 RETURN 
FN = N 
DO6 I=l.N’ 
X(i) = X(I) / FN 

6 Y(I) = Y(l) / FN 
-e.RETUw- ____-__ 

[X.DET.NlrN2.IACCJ 
c L 
--_ THIS RClUTINE CALC!JL.AlTS THL DETFQHIt!4NT @F T-IL 14IiI< X. IN DI ACF, 
c 

5 
1 L ., JSlhrc. GAJSSIAN ELZXIY~~I~N b T-i -‘AkllA PIJ;TIU- 

IMPLICIT REAL*a(A-H.3-ZJ 
_... ..HEAL*B_X1NldlJl -- --._- _ _-.__ __-- 

N2Nl = N2 - 1 
I4CC = D 
DET = 1. 

.~.. -00 7-l-=. .l rN2Hl..._ -.. _-- _-. _ .-.. _ ---. ._. -._-.- ..-_ _ _-- ---. .-- 
C FOH EACH ROW, DETERMINE LARGEST MATRIX ELEMt,I.JT 

XNAX = 0. 
K=O 
D3.l-J-=-1.,NZ-_.-- -- _-..--.- 
Y = DABS(X(I.JJJ 

1 CON11 NUE ~__ 
--_~___-.- .-_.- ------- ---.--- -- - . .--. 

IF(K.NE.0) GO TO 2 
DET = 0, 

__ PETJRN.- __- --. 
2 IF(K.EO.1) G!J TO 4 

C 1 NTERCHANGE COLUYNS IF NECESSARY 
DO 3 J = I.NZ 

_T_=. XlJrXJ -- -~_ 
X(J.1) = X<J.KJ 

, XtJ.KJ = T 3 

---4 

5 
c 

DET = - DET 
I PI._? l_+-l---__--p-- .----.- --_-- _ -.-. 
MULTIPLY ROW CONTAIN1 N; PIVL.TAL ELFWENT BY APt’r7J’nI ATt -CbtiSTAulS. 
AND AD3 TO P3YS l3ENEATl-t. SO AS TC Z:RO OilT ALL :-cllEYTS B’NEATH 
PIVUTAL ELEMENT 

.i)D 6-.J..=. IPl,N----- 
IF(X( J.I).EO.O.J GO TO 6 
3 = X(J.1) / X(I.IJ 
DO S K = IPlrN2 

-_-----.-.__ .-- --... -- 

-- s 
6 
7 

C 

.8 

XI J.KJ _=~X(JJK)ZD-~~U..XL-- 
CONTINUE 
CONTINUE 
CALCUL4TE DETERMINANT FKLIq DIAGGNAL ELEMENTS 
30 8 I = l.NZ...---.- ----_-. --- ------_ 
IF(DABS(DETB.LT.1 .3+SOb 60 TO 8 
5ET = DET * 1 .D-SO 
I ACC = IACC + I 
3ET...=-DET .*_XL1.,1 )--~--------- .___ -- - _ _ -- ._.... .._ ^_ 
HETUHN e_.- 
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- 

1’4(PLIClT REAL+B(A-H.J-ZJ 
REAL+8 X~NI.NJ~.A~NI.NJJ.LINE48~~4~.~lNES8~~4~,LIN~6~~14J. 

OLD(132).NE~(IJ2I.VI(l3J.V?~13~ 
--dREAL*4. LlNEl4133J rLCNEZ4( 33) .LINr34L33 NJSMI) ..M 4Z~-&61---- 

LO;ICAL*I LlNE2(132)rLINE3(132.N~S~l~.~~~~~3~ 
EDUIVALENCE (LINE2(ll.LXNE24Illl 
CDM~ON/C1/DELTAXrDX~2.DELTA2.D2Mi?.D25O.D2D6 l ;~NIJI.~J~I.IEX-2. 

-I..___.__.___ IS~JS~IE~J.~,lS~SrlE~,N~~Pl~J~AX~ ISd,ICd.- -L____,_. 
CJ~MON/C2/LINE4~,LIN~S~.LlN~6~.LINEl4.LlN~24,NA~~, 

1 ~T.IN,Jh.IN~lrNIS.f~1SMl.IL.SYY 
DETERMINE MINIMU! AND f4AXlMUr VALVES IN THE FIELD. AM13 STDRE FIELD 

A ---_ - - -___-_. 
= X(IS.JS) 

XY&X = Xtlf.JSJ 
DO 5 J = JS.JE 

_- -._ K-=- JE>J_,I -____----____ -- --- 
JO 5 I = IS.IE 
Y =-Xi1.J) 
AII-IS+l.Kl = Y 

_~._JF(Y.LT..XHINJX.~Lh = Y _--~ 
5 IFIY.GT.XMAXJ XYAX = Y 

c ;A”;\;;‘, INfREYENT l3ETrEEN SUCCESSIVE LEVELS OF 514>1NG 
- XHINI / NLEV 

-- A.FiD.GTB1 .D:UI -GO. YJ_tD ._~-.-.--- 
h91TE(6,2001~ (~4~~~I;NOJ.I=l.El.MT.X~IN 

20311FORH4T~;W~.2A4. L . TIME STEP =‘.t4.‘. AS VI d1 JALLY CONSTANT’. 
.‘CCNSTANT =‘.l?Dl0.2) 

RET-URN _~-__------ 
10 DL = DLOGlO(DJ 

IDL = DL 
lFIBL.LT.0.) IDL =,IDL - 1 

_.__. SIGPWT = lO,-*~~X~ID_L_)- 
IFlSIGPRT.GT.2.1 GO TO IS 
SIGPRT = 2. 
GO TD 25 

..--- -__ .-__--- . ..- 

__ I~~~lFISIG”F??..GT&l GO 10 23 - -- 
SIGPRT = 5. 
GO TO 25 

20 SIGPRT = 10. 
.-. 2.5 XINC =.SIGPRT._*~_?._**~~..~ ____. ._. __ ..____ ___ . _ 
c CALCJLATE YINIYU’d AND HAAIMVM VALVES TO BE P,UTTsJ 

w=, (NJSM~ + 11 l XINC 
= XHIN / XINC 

~__.. IF(X~Itrl.LT.~.O.I__IY.IN = IMUr - 1 ___---___ ----. 
XYIN = IHIN t XINC 
IUAX = XMAX / XINC 
IFI XUAX.GT.0. I IWAX = IHAX + 1 

-. _- XYAX =.. lHAX-t-- ___- _-__-- -. _-- .- _.-- _._... 
C bRITE HEADItJG 

nRITEI6.2002~ INAYE~I,NCl.I=l.2l.MT.XMIN.X~A~,XI~C.lS.JS.LlNEI4 
2002 F~HMAT~IH~.~x.~A~.* .=IEL>. TIME STEP =*.14.*. IUI.,lHJY =*, IPDI0.2. 

-__ 1. ‘~~~~AXlMU~~=‘.~-1.~.310.2~.‘~_J~TE~VAL~=’.lP310.2~ __-- 
2 l . BASE POINT = (‘.lZ.‘.‘. 12.’ l’//lx.J.IA4b 

DJ 50 J = l.JN 
LINE4R INTERPOLATION TO 3ETkhMINE THE VALVE JF ldk FIELD AT EVERY 

-___ 
DO 30 I = l.IN’41 
DIFI = tA(It1.J) - A(I.JIJ / NIS 
L = NIS l (I’- IJ + 2 
NEWILl = 4II.J) - XHIY 
30 30 K = l.NISYl 

30 NEbIK+Ll = NEYIK+L--1) t 31FI 
---. NEW{ ILl-54.1 INfiJI-X.Yl’J -- 

IFIJ.EO.1) GO TO 40 
: LINEAR INTCRPOLATION TO ~ET~HC’INE VALUE OF FlEd ti.4 ,INES BETWEEN 
c VERTICAL CR10 POINTS 

__..__ DO .35-.X_ ?.2.11-- -__- ______._ - ._-.- ---- 
31FJ = (NE;\(I) - OLDI 1)) / DV 
TEHP = OLDI 11 / X INC + 2. 
35 35 K = I.NJSHl 

--_r EMP-=-JEYP- kl.DIti __._ _--..__. --- __- 
L = TEMP 

: UETEQMIkE SY:,!DOLS ASSTCIATED WIT)1 THE VALUES OF III; FlFIL3 AT LACH 
c PRlNT CHARACTERS lrND ‘?INT LINES 

-__ 35..L INE3I I .K). = sY.u(LJ--- _- _-, - _-.-.-- 
?iRllE(6.2003) LI:JE34 

2003 FORMATIlX.33A4J 
40 00 45 I = 2.IL 

_.... _ L_ _= .NLW I 11 -/_-XI YC_lc_Lm 
b’i LINEc?(Il = SYYILl 

hRITEI6.20031 LINE.24 
DO 50 I = 2.IL 

~.__-- -- - - 

_-.--. .--.-- 

_- 53_OLDI:.LJ-_~1N*Ek.UJ__- --.- __---_ -.-.. -_. 
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YRITElb.2003) LIYEl4 
t CALCULATE 1HE VALUE 3F EACH LINE SEPARATIN G LEVCLS OF SHA31NG 

E = DHAXI~DABS~XMINJ.DAI~S~X~AXJJ 
--.-~~,~~.~Fl --___-- 

IFlEL.LT.0.) IEL = IEL - 1 
VZllI = XYIN / 10. t* ILL 

._--- - ~~_~-~ -...-_. 
= V2llJ t VINC 

ViNC = 2. * VINC. 
DO 55 I = 2.13 

-...yl(I,_r-VllI-1, + VINC ..-.___- . . . - -.- 
55 V2( 11 = VZll-IJ + VINC 

C WHITE SH4DlN; VALUE SCALE 
CRlTEl6.2004J Vl.LINE46.LINE5Y.IFL.LINE6~,V2 

-2004 LDHlJA~11HO~15X~13FE.2/lX.*5CAL~..1TC BE*r14A~/1X.~.rllJlPLl 
I 1418/l X.‘BY lJ***. 13.2X.14A8/12X.13FB.2J 

RETURN 
ND 

5 Ti-llS ROUTINF INITIALIZES ANNJTATION FOR GPA=-lIC4, iJJJPUT 

T---a 4L,fl J-lNEhBfl 4Ld-leYESBIl O~JLlNE~SLI.4JJ.SLA~~B-_ 
REAL*4 LINE14l33J,LIVE24[ 33JmLlN’34l33.NJSMlI .NA4EllZ,6J. 

1 FiAME2f2.6) 
-blll2J. 
.DASH,BLANK 

DATA fYYI/’ l .*A’.* r,‘B’.’ ‘,*C*.* l ..De.’ ‘.*:*,’ ..‘F’.* l .‘G*, 

: 
I . .‘H’ .* ..‘I’*’ ..‘J’.’ . , .K’ l . . ,._.*. ‘.‘M’.. ..*N’. 
. ‘.‘O’.’ . ..3. ,. .,‘a’. ’ .‘R’ .* I l .j. ,. ’ .‘T’ . . ..‘U’. 

--3- . ‘-‘y_‘-‘-~~‘~~,*__.‘,~‘q’. ~**Y’*~.~‘~.f*.l -I/-.---. _ -. 
DATA NAMEI/’ ’ .- PSI’ .’ * l ’ RHO’,’ l .‘LETA*, 

1 # ’ l ’ U’.’ ‘s’ Y’.’ LUs’.‘(4I)‘/ 
DATA BLAbdUB/ ‘/.OLAhK4/* ‘/.BLAN</’ ’ /, JASrc/’ I’/. 

-. - -1 --- DO T/.‘- ‘1 -.-__.-. .- .-.-.---_ 
C CALCULATE NUMBER OF >hltvl CHARACTERS FRO’4 O;Y: 3JitZGulAL CR-I-D 
c POINT TO THE NEXT 

p*IS = 129 / IN’41 
- _ - NFB = _(2 t ?iEZ..fNWlJ I .A-+(- _~_- .__. .._.. _--..- ---- 

NISMl = NIS - 1 
IL = NIS * INHI + 2 

C INITIALIZE TITLES AND SY’483LS 
----DLl-ll=lr3 --___. -.--- _. -_ --_ 

30 I J = 1.t 
1 NAYE2lI.J) = NAMEIltmJb 

JO 2 I = 1.53 
-.. .- 2. SYM2LlJ-_=_SYYlUti - -- --- . ..-. -..---.__- _ 
c INlTlALIZE ARRAYS USED IN PXIhT LINES 

30 3 I = 1.33 
3 LCNEl4lIJ = -LANK4 

.-.- ~LINEI~NIS*(I-II*~J D3 4 l..r 1 .I-.- ------. -- _-.-.-. - --_. -. __ _._ _ 
= DDT 

30 5 I = NFO.33 
5 LIrJE24lI J = I3LANK4 

-.---. !-INE2lll-c.DOJ- -. --__-.-- .--_ . _- ._ .._ 
LINEZlILtlJ = DOT 
JO 6 I = I,NJS.Ml 
LINE3ll.I) = OLAYK 
Oil b J.~:.NF13.33. - ----___-_.-__ . ..- .-_ ._-.. .- .- __ . . _ _ 

6 LINE34lJ.I) = LiLANK4 
Dn I 1 = 1.16 
LINE~G( I)-=‘HLANKA 

._. ..LINE~M( I )_-=.-bL4.N<8. 
7 L I~c68( I J = DLANK~ 

DO 8 I = 1.13 
LINE3iR*Ijijm= onst-1 

. 8 53 iNII6l8*1~3I..~~-D~SH___ --_-- -- .-. _ ._ -- .-_ - _.. .- _. 
9 1 = 1.26 

9 LINE5(4*1+21 = SYM1(2*Ib 
DC) 10 I = 1.52 

10 LINEal2+1,3L-= DASH-------------- -_ ..~.. ._... .__ ..-. .._.. _._ 
2ETUaN 

88 



c 

IYPLICIT REAL+B<A-H.D-ZJ 
..INTEGEH*? ~J~PEI:NLNJ~~~~~NP~~~~JJBINPBREJ~-_._ ___ - _-.._ - .._._ 

~OYHO~/Cl/OELTAX.CXM~,D~LTAZ.~Z~Z.~ZS~,DZ~~ .u.NA~A,NJW~.IEXP~. 
1 IS.JS.IE,JE.IS~.IE~.N~3Pl.Jf~AX.I5B.IEd 

INITIALIZE ALL INTERVAL PDINTSI AND UPPER AN3 ,JdE3 3uVNDAkIES 
Da-2 I ~..l..mku - _----_--~ --._ - 

DO 1 J = 2.NJYI 
1 ITYPE(IeJJ = 0 

ITYPE( I.NJJ = 1 
2 ITYPE(IeI# = 2 

c 

t 
DETERMINE TY=E OF ALL POINTS ON THE SURFACE VF TriE 6ARRIER. 
PROCEEDING FRO?4 LEFT TO RIGHT 

.-- I Sd II 6.(2_) 
1EB = 164NPBPIJ 
1B(IJ = ISB 
JBIIJ = 1 

.-___ .._- 

-._ - .-- l~(NPRf’~J-SEEI 
J@fNPFJP2) = I 
lTYPE(ISB.lJ = 5 
ITYPE(lEE~IJ = 6 

--.~~“~L;L.-- 
= 2.NPEPI 

K = lB(IJ 
L = JB(I) 

._ -____.. --^_ - -. 

_-.- J FIL.GT, JM4X)-lY4_* = I 
IF(JB(X-1)-L) 3.4.8 

3 1TYPEtK.L) = 3 
IF(L.EQ.JB(I+lJ) ITY’E(K,Ll = 7 

m..-GP T-O-9.-- 
4 IF(L-J8( I+1 JI 5.6.7 
5 I TYPE(K.L) = 5 

- -. - .-.-___-_ 

___- ---_-- -~- 

GO TO 9 
._ 6.1 TYPE 1K.L). 7 

50 TO 9 
_---__-__._-- -... ---. - 

7 IlYPE(K.LJ = 8 
GO TO 9 

__ _ .CJ TWE! K 9.L j-=4 __.___ - _- 
IFiL.EO.JB(I+IJJ ITY=f(K.L) = 6 

9 CONTINUE 
JMAXMl = JMAX - 1 

C OEFINE -eLL ..qOlNT.SS_I.&%_IDE THE eFM-Ri~I~.P_TO. Se. T-VP= 9 -.--.-- - 
3Cl 10 J = 1.JMAXHl 
K = 0 
DO 13 I = ISB,IEB 

_ .-L = I T.YPE (.Ir J 1 _ -. 
IF(L.LT;3.A&B.K.FQ.l) lTY=E( 1.J) = 9 

--- .__- --- 

lF(L.EO.3.Ok.L.Ea.S) K = 1 
10 lF(L.EQ.4.0R.L.Ea.6) K = 0 

- -- RET’-!HN_ __- -_____- ..--___. _.-- _ --_- 

~X.PSlAVX~I~YPE.EETA.IB.JB.XO,Nl.l~J.~l~~.NJM2.N~PA. 
JYAXML,NPB.NPBP~~ 

C __ -.- --- 
‘-T~iS~~~i~FSIIPET;POSCS TtlE SGLVri~FT-~F~HE-~~i-~~-clY--~jAi: ION WITH - 

11iE EFFfCT flu PSI Clfu:i41EJ UY ThF. VC1T.TICIIY I=&J.I i4Crl PiJIhT 0 N 
JHE SUlrFACE (IF THE tlAt.RIE(i 

.i ____ --- -. .--- ---.- __- --- --___ 
IWDLICIT RtAL*9( 4-tl.3-ZJ 

RCAL*& X~NI.NJI.PSIAJX~UI?A,~J~2,JhlAX~l~.B~TA~U’~~U?3J 
I\ITEGER*4 ITYFE(tiI.NJ).lU(~4Pi3F2~.JB~NPRP2~ 

__ ~~~_~~IMU~/C~./I)EL.~A.~.,.DX:~~,~ELTA~,~ZM?..~Z.S~ rOZDL .i,Nl?l.UJ?l .1.C?P2. 
1 IS.JS.IE+JE.IS.~.IEk.UP~f’l.J~AX. Ibd. 1Ed 

03 2 K = l.NPB 
ALi’HA = 0. 

_____ Da .l I =kJ..*.VVL--- -- --- 
C CALCULATE AL’HA FF0.M BETA 

1 ALPHA = ALPHA + 3ETAtK.L) L (X0 - X(IO(L+l).Jd(-+IJJJ 
L = IR(NP.JPl) - IBiKtlJ 
M = JR(K+lJ - 1 
DO 2 I = l.NlH2 
03 2 J = l.NJH2 

--.._ 2 x( II J+l J~=.~~~~J~~J-+.-A~.~HA..~~.~~S~AVX~L~I.J..~J ______.__. ._. 
C L)EFIUE PSI AT SIDE OilJluDARlES 

D3 3 J = 2.NJYI 
X(NIY1.J) = X41.J) 

.--.- 3mXiNI. J)..=. XfZvJ) -.-- .___ -_..-____ __._ ..___ ._ l EDiFINE UUVUDARY COU~ITION EXACTLY CN AND IUcl>-fj4RHIER 
DO 4 I = ISO, IEB 
35 4 J = 2.JMAX 

_- -4 Ii=( I~Y~ELI.JJ~N~,~~)_x(~.JI-~~o_-___.~ __-.--. 
IGETLIRN 

. --. ..__. 

EN3 
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Listing of data cards 

.. 80. IO 0 0 b ;253*02 6;250tO2 - --- 65 24 I .003t-lJ1 
12 2 12 5 15 s 15 4 15 3 1s 2 

I 1 65 
23 12 4 12 5 13 5 14 

2: 2 25. 25 _... 2E. -.9. ._ 

RO 
90 
2: _ __-_ ___ __... _. - ..__ __-_.- .-. - . . 80 
2fsoD+OI- ._ .__. -_.. - - 

o! 000+00 2.5OD+o2 

Beginning of output 

SUM*44i OF INPUT DATA FOR NDN-ITERATIVE, SOLLD BARRlEN PHOWW 
_ _ _--. _ .- . 

Nl - 55. NJ = 24, NT = SO, NPB = IO. IS1 = 0, ISAVE = 0. DX = 6.26LI*oz. 02 = 6.2sD+02. “T = ,.OOD+J, 

-COOR-Dl-uiTES--OP-S*HUIER - 1 12.21 .-4 l-z31 (12.41 lJZ.!s.- (13;SJ (14.51 (I>.frJ-(l5.4) (15.3) ~-(I5021 

ISi 1. ,s= 1, IN = 65. JN = 2.. h,SY, = 3 
-.. 

-NPSILV- . --60;- NR,iOLV L DO;--NLTALVP~~-NULV = 2,. -NILV i 25, Nnriv i’- $5 
..- 

IPSIGR = 60 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
.rR”3GQ .;-.so-.-o- .o--‘o.-O-..O..--O-~o--O~-J--~O. o ... o--o--.o-. o.- o o.. o ..-.. .-. ._ 

ILT4GQ = 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
.,“GR ..-- _. I dO .-.o- o- .o.--o--o o ‘-o. o- o .-.. o o o _ * o.-.o o o--o --. -. _. ..-- _ . 

IWGQ = 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
.,R,‘R . 5. o.-O --o-o-o.-o . -o.‘-o.-. .” .... o .- o o .. -.o. -... -. o -b.. o .- - 

CONSTAHT VE-OCITY CASE, I.41 - 2.50D+O, 

CONSTANT L.*SE RATE -C&E- GAWMA~i-0.0 , TO.= 
___ . . - _. ._- - .--.- .___. __-- 

2. SOD to2 
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LEGEND FOR FIGURES 

The figures show the line printer output at'fixed times for selected 

fields in the (x,z) plane, that is, in a cross section normal to the axis of 

the disturbing obstacle. The top line contains the symbolic name of the 

scalar field, the time step number, the range of the values plotted, the 

interval from one band to the next, and the grid point (i,j) values for the 

lower left hand corner of the output field. Value intervals are represented 

by alternating bands of letters and clear space. The values of the equi-scalar 

contours constituted by the boundaries of these bands may be read from the 

scale at the bottom of the diagram. The scale is subject to change for each 

diagram, since it is automatically adjusted to the range of output values. 

The grid points at which the scalar field is calculated are delineated 

by dots around the edge of the diagram. Values between the grid points are 

determined by an interpolation routine. The barrier is indicated by a 

solid line at the bottom of each diagram, except for figures 13 and 14. For 

this case only, the lower boundary was specified by a nonrigid flow condition 

located between 11 and 20 grid points from the left side. 
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Figure 1. Streamfunction field at 1000 seconds for case 1 (constant 

velocity, constant stability). Ax = 1000 m, AZ = 1000 m, 

horizontal extent displayed = 64 km, vertical extent 

displayed = 23 km, 
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Figure 2. Streamfunction field at 1500 seconds for case 1. Dimensions 

as in figure 1, 
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Figure 3. Streamfunction field at 2000 seconds for case 1, Dimensions 

as in figure 1. 
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ano FIELD. Tl"C STEP = 50. "IHI""" . 1..0"-01. ".X,Y"" I ,..?6"100. lNTEa".L I *.000-"2, B.SE POlllT - , I. I, 

.iriririri4i*iri*iri*i*i*i*i*i*i*i*~4i*i*i4i4i*i*i*i*i*i*i*i*i*i4i*i*i*i*i*i*i*i*i*i*i*i*i*i*i*i*i*i*i*i*i4i*i*i*i*~*i*~*i*i*i*i*i. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......... 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...4... . . . . . . . . . . . 
- -. 

. 

Figure 4. Density field at 1000 seconds for case 1, Dimensions as in 

figure 1. 
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Figure 5. Density field at 2000 seconds for case 1. Dimensions as in 

figure 1. 
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cccccLcL.c ; cccc ::: 
CCCCCCCCC‘C‘CC‘~ 

CC‘CCCCEC cccc cccccccc CCCCCCCCCCCCCC CCCC‘CCCCCCCCCCCCC 

Figure 6. Vorticity field at 1000 seconds for case 1. Dimensions as 

in figure 1. 
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LET. FLELD. TlYE STEP - 100. “I”,““” - -2.,00-07. I.*,*“* = ,.O,o-0,. ,“IEl”.L . 5.000-0,. B’SE POlNT I I I. I, 

Figure 7. Vorticity field at 2000 seconds for case 1. Dimensions as 

in figure 1. 
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I I I I I I I - -.r_--,.. 

Figure 8. Richardson number field at 2000 seconds for case 1. 

Dimensions as in figure 1. Areas in which Ri < I are 

indicated by a dashed line. Areas in which Ri < l/4 

are indicated by the symbol "A". 
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/B --- -.-. - _ -- - -- - - -- - - -- -_ - 

Figure 9. Streamfunction field at 3750 seconds for case 2 (linear 

shear, constant stability). Ax = 2000 m, AZ = 1000 m, 

horizontal extent displayed = 128 km, vertical extent 
displayed = 20 km. 
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.,. . . . .-. 

Figure 10. Streamfunction field at 7500 seconds for case 2. Dimensions 

as in figure 9, 
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Figure 11. Streamfunction field at 1200 seconds for case 3 (exponential 

shear, constant stability, Rio "2=3.3). Ax = 500 m, Oz = 

500 m, horizontal extent displayed = 32 km, vertical extent 

displayed = 7.5 km. 
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Figure 12. Streamfunction field at 4500 seconds for case 4 (exponential 

shear, constant stability, Rio "2=6.O). Ax = 750 m, AZ = 

500 m, horizontal extent displayed = 48 km, vertical extent 

displayed = 7.5 km. 
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Figure 13. Streamfunction field at 3000 secQnds for case 5 (nonlinear, 

constant pu2). AX = 1000 m, AZ = 1000 m, horizontal extent 

displayed = 64 km, vert?cal extent displayed = 10 km. 
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-- . ...-., I.&L-- r - 

. FIELO. I,“E bTLP = 300. Y,N,U”Y = -3.000+“,. l4A”IM”Y = ,.50”+“,, ,N,ER”AL = b.OOD+OO. BASE POlNr = , I, I, 

Figure 14. Vertical velocity field at 3000 seconds for case 5, 

Dimensions as in figure 13. 
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Figure 15. Streamfunction field at 1500 seconds for case 6 [constant 

velocity, constant stability, ksh=l,17), Ax = 750 m, AZ = 
750 m, horizontal extent displayed = 48 km, vertical extent 

displayed = 17.25 km. 
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4 4 a_-- .iriririririririrlririL;r;riririrXli*rrh -. t4~14141414~1414i4i414i~44 ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...*..... . . . . . . . . . . . ..I.... 

Figure 16. Density field at 1500 seconds for case 6, Dimensions as in 

figure 15, 
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Figure 17, Streamfunction field at 600 seconds for case 7 (constant 

Velocity, constant stability, large obstacle, k,h=1.95). 

Ax = 625 m, AZ = 625 m, horizontal extent displayed = 40 km, 

vertical extent displayed = 14.38 km. 
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Figure 18. Streamfunction field at 800 seconds for case 7. Dimensions 

as in figure 17. 
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Figure 19. Streamfunction field at 1000 seconds for case 7. -Dimensions 

as in figure 17. 
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Figure 20. Density field at 1000 seconds for case 7, Dimensions as in 

figure 17, 
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Figure 21. Richardson number field at 1500 seconds for case 6. 

Dimensions as in figure 15. Areas in which Ri < 1 are 

indicated by a dashed line. Areas in which Ri < l/4 

are indicated by the symbol "A". 
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Figure 22. Richardson number field at 1000 seconds for case 7. 

Dimensions as in figure 17. Areas in which Ri c 1 are 

indicated by a dashed line. Areas in which Ri < l/4 

are indicated by the symbol "A". 
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Figure 23. Cross section of the potential temperature (in K) along 

an east-west line through Boulder on 11 January 1972. 

Analysis above the heavy dashed line is from the Sabreliner 

data, taken between 1700 and 2000 PIST, and analysis below 

this line is primarily from the Queen Air data, taken 

between 1330 and 1500 MST. Flight tracks are indicated by 

the light dashed lines (from Lilly and Zipser, 1972). 
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Figure 24. Cross section of horizontal wind velocity (in m/set) along 

an east-west line through Boulder on 11 January 1972. This 

analysis was derived from Sabreliner data only. The analysis 

below 500 mb was partially obtained from vertical integration 

of the continuity equation, assuming two-dimensional, steady- 

state flow. Crosses indicate turbulent portions along the 

flight track (from Lilly and Zipser, 1972). 
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Figure 25. Streamfunction field at 4250 seconds for case 8 (Boulder 

windstorm). ax = 2000 m, AZ = 500 m, horizontal extent 

displayed = 128 km, vertical extent displayed = 11.5 km, 

elevation at base of mountain = 1,5 km. 
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Figure 26. Horizontal velocity field at 4250 seconds for case 8. 

Dimensions as in figure 25. 
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